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ABSTRACT 

Predatory bacteria are ubiquitous in aquatic environments and may be important players 
in the ecology and biogeochemistry of microbial communities. Three novel strains 
belonging to two genera of marine flavobacteria, Olleya and Tenacibaculum, were 
cultured from coastal sediments and found to be predatory on other bacteria on surfaces. 
Two published species of the genus Tenacibaculum were also observed to grow by lysis 
of prey bacteria, raising the possibility that predation may be a widespread lifestyle 
amongst marine flavobacteria, which are diverse and abundant in a variety of marine 
environments. The marine flavobacterial clade is known to include species capable of 
photoheterotrophy, scavenging of polymeric organic substances, pathogenesis on 
animals, the degradation and lysis of phytoplankton blooms and, now, predation on 
bacterial communities. Strains from the two genera were found to exhibit divergent prey 
specificities and growth yields when growing predatorily. Olleya sp. predatory cells 
accumulated to an order of magnitude greater cell densities than Tenacibaculum sp. cells 
on equivalent prey cell densities. Experiments were conducted to constrain the potential 
of the novel isolates to affect prey communities under more environmentally relevant 
conditions. An investigation of the minimum number of predatory cells needed to 
generate clearings of prey cells found that the inoculation of individual predatory 
flavobacteria cells can ultimately result in dense lytic swarms. In some cases, the 
susceptibility of particular prey species to lysis by a flavobacterial predator was found to 
vary based on the growth state of the prey cells or the presence of their spent growth 
media. A novel methodology for the experimental study of biofilms was used to assess 
the impact of exposure to predatory marine flavobacteria on the release of macronutrients 
from prey biofilms. The Olleya sp. predator had a stimulative effect on macronutrient 
release while the Tenacibaculum sp. did not, further suggesting the two groups of 
predators are adapted to different ecological niches.  
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CHAPTER 1: INTRODUCTION 

 

Abstract 

Predation as a general ecological phenomenon has been frequently found to be 

important in structuring and regulating microbial communities. Although 

phylogenetically and physiologically diverse predatory bacteria have been described and 

studied, our knowledge of their ecological roles in microbial communities remains small. 

Their great variety of predatory strategies suggests that they may have novel effects on 

microbial communities, relative to those already known for protozoan grazers and 

viruses.  

 

Predation in microbial communities 

Predators have been found to have diverse impacts on communities on a variety 

of scales, from macroscopic to microscopic. These can include the maintenance of 

community diversity through selective predation on otherwise competitively dominant 

species [1,2,3,4,5], the stimulation of primary production [6,7] and direct selection for 

predation-resistant physiologies and behaviors [8]. Top-down, or mortality-driven, 

control of microbial communities can be exerted by organisms as diverse as metazoa 

[9,10], protozoa [11,12], bacteria [13,14] and viruses [15].  

Predation has been associated with alteration in the rates of microbially mediated 

biogeochemical processes, including nitrogen fixation [16], nitrification [17], carbon 

fixation [6], the production of dissolved organic carbon (DOC) [18,19] and jet fuel 

degradation [20]. In some cases in which predators are grazing directly on the 

microorganisms responsible for the process in question, evidence of lower prey 

populations and higher community productivity suggests increases in the prey per-cell 

metabolic activity [16,17]. However, it is unclear if this is a direct response to predation 

on the part of individual prey cells or an indirect result of lower prey population densities 

because of grazing pressure. Another major consequence of predation is the conversion 

and release of grazed prey biomass as inorganic nutrients and incompletely broken-down 
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organic matter [7,21,22,23,24], which could sustain additional prey production and make 

nutrients available to other parts of the microbial community. These processes are 

integral to the operation of the microbial loop in aquatic ecosystems, which leads to more 

efficient cycling of organic matter and other nutrients [25].  

The effect of a specific predator in a particular ecosystem is dependent on its 

predation mechanism and other adaptations to a predatory lifestyle. Since most protozoan 

grazers ingest their prey by phagocytosis into food vacuoles, they can only engulf prey 

cells within a particular size range, an example of limitations imposed by the predation 

mechanism [11]. As a result, prey communities often respond to protozoan grazing 

pressure with increases and/or decreases in cell size distribution or the formation of 

aggregates too large for protozoan grazers to engulf [26,27]. Other adaptations besides 

the predatory mechanism itself can also influence the components of a microbial 

community that are susceptible to a particular predator as well. For example, different 

heterotrophic microflagellates have divergent motility adaptations that appear to control 

whether they are specialized to grazing on attached or suspended prey populations [28]. 

Two microflagellate species with robust swimming ability were found to reduce 

suspended populations of prey bacteria without any decreases in attached bacterial 

populations. On the other hand, two microflagellates with weak swimming capability, but 

rapid movement over surfaces as a result of adaptations of their flagella, mainly fed on 

attached bacteria [28].  

 

Predatory bacteria 

Although prokaryotic microorganisms are often assumed to occupy basal roles in 

microbial food webs as consumers of dissolved organic carbon (DOC), diverse bacteria 

are known to grow by the lysis of a variety of prey microorganisms [29,30,31,32,33]. 

Their trophic role in microbial ecosystems could be more similar to that played by 

protozoan grazers and viruses than that of heterotrophic, non-predatory bacteria.  

Cultured predatory bacteria belong to a wide variety of phylogenetic groups 

(Table 1). The best- and longest-studied groups both belong to the δ-Proteobacteria: the 
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surface-associated myxobacteria and the genera Bdellovibrio, Bacteriovorax and 

Peredibacter. In addition, predatory bacteria have been isolated that belong to the α-, β- 

and γ-Proteobacteria and the phyla Bacteroidetes, Chloroflexi and Actinobacteria. In 

some cases, such as the myxobacteria and the Bdellovibrio-like genera, all cultured 

members of these groups are predatory [34,35] while most of the other known predatory 

bacteria are closely related to apparently non-predatory species. For example, Ensifer 

adhaerens, an α-Proteobacterium isolated from soil that predates on the gram-positive 

Micrococcus luteus [30], is closely related to plant-associated rhizobia [36], none of 

which have been reported to possess predatory capabilities.  

In addition to their broad phylogenetic diversity, predatory bacteria also utilize a 

variety of lytic mechanisms to attack prey cells. A distinctive periplasmic invasion 

mechanism is utilized by the δ-Proteobacterial genera Bdellovibrio, Bacteriovorax and 

Peredibacter in which individual predatory cells attach to and penetrate the outer 

membranes of susceptible Gram-negative bacteria [29,35]. The predatory cell then 

degrades the cytoplasm and inner membrane of the prey, grows and divides before 

bursting the outer membrane and repeating the cycle. Some predatory bacteria belonging 

to the genera Micavibrio and Ensifer have been reported to attach to and degrade prey 

organisms’ from a position on their outer surfaces, a strategy termed epibiotic predation 

[30,37,38,39,40,41]. In most other documented cases, some degree of cell-to-cell contact 

short of the tight association described as epibiotic has been observed 

[42,43,44,45,46,47]. Although these lytic mechanisms have not been well-characterized, 

they presumably involve either the release of lytic factors into the local cellular 

environment or the action of outer-membrane associated hydrolytic enzymes.  

In addition to the diversity in the mechanisms of cell lysis, there is also diversity 

amongst predatory bacteria in their hunting strategies. The periplasmic predators and at 

least one of the described epibiotic predators, Micavibrio, possess flagella and swim at 

high speeds [37,48]. In addition to their solitary hunting habit, these swimming predators 

have all been found to be obligate predators, incapable of growth in the absence of live 

prey cells although host-independent mutants of Bdellovibrio sp. have been developed in 
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culture. This obligate predatory metabolism stands in contrast to nearly all other 

described predatory bacteria, which can be grown non-predatorily as well as with live 

prey as a sole carbon source.  

Amongst the non-obligate predatory bacteria, many groups lack flagella entirely 

and are motile by gliding on solid surfaces, including myxobacteria, Saprospira sp., 

Lysobacter sp. and Herpetosiphon sp. [33,34,44,45,49]. All of these gliding, non-obligate 

predatory bacteria, collectively referred to hereafter as surface-associated predatory 

bacteria, have been observed to lyse prey on solid surfaces and swarm cooperatively in a 

habit often termed wolfpack predation [13,50]. Despite their lack of motility in 

suspension, at least one species of myxobacteria has been observed to form their own 

particulate surfaces composed of floating microcolonies, which can trap and lyse 

cyanobacteria in suspension [46,51]. At least for the myxobacteria and Saprospira sp., 

the wolfpack growth habit does not appear to be required for predation to occur since 

both groups have been observed to singly lyse individual prey cells [43,45]. In fact, 

Saprospira grandis has been described as utilizing an additional strategy termed 

ixotrophy, or the feeding on prey caught on a sticky surface [45]. In suspension, S. 

grandis was observed to catch flagellated Vibrio cells by the ends of their flagella and 

‘reel’ them in up and down the predator cell’s length.  

Most cultured predatory bacteria have been isolated from soil and aquatic 

sediments, as shown in Table 1, although some cultures have also been isolated from 

seawater and freshwater lakes and ponds. A cursory search of the Genbank sequence 

database will reveal that culture-independent surveys of microbial 16S rRNA genes have 

detected sequences closely related to known predatory bacteria in nearly all aquatic 

environments [14]. Although predatory bacteria are clearly ubiquitous, the question of 

their ecological and biogeochemical importance has rarely been investigated.  

 

Towards an assessment of the importance of surface-associated predatory bacteria 

In light of present knowledge of predatory bacteria, they seem likely to affect 

microbial communities in ways distinct from those of protozoan grazers and viruses. As a 
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result of their high intra-guild diversity, different groups of predatory bacteria may also 

diverge from each other with respect to their effects on prey communities. Similar to the 

coevolutionary interactions between prey and protozoa, many predatory bacteria seem 

likely to select for certain cell wall and membrane characteristics as suggested by already 

described prey specificities.  

Although predatory bacteria have been relatively less studied than both larger and 

smaller predators, some have been shown to affect prey communities. Much of this work 

has focused on the Bdellovibrio-type predatory bacteria, which are capable of drastically 

lowering the viability and density of Gram-negative bacterial biofilms [52,53] and 

provoking increases in cell size [54]. Coevolutionary interactions between Bdellovibrio-

type predators and their prey have been inferred from the fact that predators isolated from 

the Great Salt Lake have prey specificities apparently better adapted to the indigenous 

heterotrophic bacteria relative to reference strains [55].  

In a study of the removal of Escherichia coli cells from estuarine water, predation 

by Bdellovibrio-type predator was detected but judged to be less important than 

protozoan grazing, since the presence of protozoan grazers was associated with greater 

decreases in E. coli cells [56]. However, the study was carried out using estuarine surface 

water communities, which may not have contained a predatory bacterial community 

adapted to efficiently utilize E. coli. In addition, surface-associated predatory bacteria 

were unlikely to have been present in the samples used. Particularly with respect to 

surface-associated predatory bacteria, little is known regarding their impacts on the 

surrounding microbial communities.  

The non-obligate predatory metabolism possessed by all known surface-

associated predatory bacteria presents a significant challenge to interpreting the 

consequences of their presence in the environment. For instance, myxobacteria can be 

difficult to separate from solid substrates, rendering traditional approaches used for 

Bdellovibrio-type predators of little use [34]. Even though modern molecular techniques 

have made it possible to quantify the numbers of known non-obligate predators in an 

environment, it is currently impossible to tell with certainty whether non-obligate 
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predators detected in the environment are growing predatorily or non-predatorily. In 

addition, since most non-obligate predators are closely related to non-predatory species 

[36,49,57,58], a priori knowledge of which species are predatory and which are not is 

necessary to interpret the results of culture-independent diversity surveys.  

For example, even when a molecular technique can be targeted to a particular 

ecological category, the molecular identification by itself is insufficient to identify novel 

predators. A stable-isotope probing study using 13C-labeled E. coli prey added to soil 

microcosms detected an interesting diversity of microorganisms within the labeled RNA 

fraction at various time points in the experiment [59]. Sequences closely related to those 

of known non-obligate predatory bacteria, including myxobacteria and Lysobacter sp., 

were detected in the labeled RNA fractions. It is important note, however, that labeled 

sequences were detected at the same time points from a variety of other phylogenetic 

groups, which may or may not represent predatory bacteria. Since non-obligate predatory 

bacteria lyse their prey extracellularly, it is possible that some of the labeled biomass 

would be consumed by predation-resistant scavenging heterotrophs in the same vicinity. 

The fact of assimilation of labeled biomass, by itself, is of limited usefulness in 

identifying novel predatory bacteria.  

Therefore, the most viable approach currently available for determining the 

potential ecological and biogeochemical importance of surface-associated predatory 

bacteria is to conduct laboratory experiments with controlled cocultures of predator and 

prey. Such an approach has been widely used in exploring the effects of protozoan 

grazing on prey communities [22,23,24,27,60,61,62].  

The following thesis chapters describe the results of the enrichment and isolation 

of surface-associated predatory bacteria and experiments conducted to elucidate their 

predatory biology and potential biogeochemical effects on a simple prey community. I 

addressed the following questions:  

 What surface-associated predatory bacteria can be cultured from coastal 

sediments?  
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 How are the isolates’ predatory activities influenced by factors such as the 

size and distribution of predatory inocula and the composition and activity of 

prey communities?  

 How is macronutrient release from a simple prey community affected by 

exposure to the predatory isolates?  
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Table 1: List of described predatory bacteria  

Group Predatory 
strategy 

Known habitats Known prey References 

α-Proteobacteria 
Alcaligenes 
denitrificans 

n.d. Eutrophic freshwater 
pond 

cyanobacteria [57] 

Ensifer adhaerens Epibiotic Soil Gram(+) bacteria [30] 
Micavibrio sp.  Epibiotic Soil, sewage Gram(-) bacteria [37,63,64,65] 
Candidatus Midichloria 
mitochondrii 

Periplasmic Tick ovary mitochondria [66,67] 

β-Proteobacteria 
Cupriavidus necator n.d. Soil Gram(-)/(+) bacteria [68] 
Aristabacter necator n.d. Soil Gram(-)/(+) bacteria, yeast 

and other fungi 
[69] 

γ-Proteobacteria 
Lysobacter sp.  Wolfpack, 

cell contact 
Soil, freshwater Cyanobacteria, Gram(-)/(+) 

bacteria 
[49,70,71,72] 

Stenotrophomonas 
maltophila 

n.d. Stratified lake, soil Chlorobi, Gram(-)/(+) 
bacteria 

[58] 

δ-Proteobacteria 
Bdellovibrio sp., 
Bacteriovorax sp., 
Peredibacter sp.  

Periplasmic Soil, freshwater, 
estuaries, sewage, 
marine sediments 

Gram(-) bacteria [29,35,64] 

Myxobacteria Wolfpack, 
cell contact 

Soil, dung, bark, 
sediments 

Bacteria, fungi, protozoa, 
nematodes 

[31,34,43,73] 

Chloroflexi 
Herpetosiphon sp. Wolfpack, 

cell contact 
Freshwater lakes Un-encapsulated bacteria [33,74] 

Bacteroidetes 
Saprospira sp. Ixotrophy, 

wolfpack, 
cell contact 

Coastal sediment, sea 
water 

Bacteria, cyanobacteria, 
diatoms 

[32,44,45,75] 

Actinobacteria 
Agromyces ramosus n.d. Soil Gram(-) bacteria, yeast [42,76] 
Streptoverticillium sp.  n.d. Soil Gram(+) bacteria [77] 
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CHAPTER 2: NOVEL STRAINS ISOLATED FROM A COASTAL AQUIFER 

SUGGEST A PREDATORY ROLE FOR FLAVOBACTERIA 

Accepted for publication by and included with permission of FEMS Microbiology 

Ecology 

 

Abstract 

Three newly isolated strains of flavobacteria from coastal aquifer sediments have 

been found to be predatory, lysing a range of live and pasteurized microbial prey. The 

three strains have been classified on the basis of 16S rRNA gene phylogeny as belonging 

to the recently described Olleya (strains VCSA23 and VCSM12) and Tenacibaculum 

(strain VCSA14A) genera. Two of the closest cultured relatives to the strain VCSA14A, 

T. discolor and T. gallaicum, were also found to be bacteriolytic. These five predatory 

strains exhibit gliding motility and have been observed to lyse prey cells after 

surrounding them with social swarms, similar to known predatory bacteria such as 

myxobacteria and members of the genus Lysobacter. Flavobacteria are often numerically 

significant in a wide variety of freshwater and marine environments, particularly in 

association with particles, and are thought to be involved in the degradation of 

biopolymeric substances. If predatory capability is widespread among flavobacteria, they 

may be a previously unrecognized source of ‘top-down’ bacterial mortality with 

influence on the composition and activity of surrounding microbial communities.  

 

Introduction 

Microbial communities can be structured by top-down mortality resulting from 

the activity of predators, which include protists, viruses and bacteria. The action of 

microbial predators also causes the release of dissolved organic matter (DOM), much of 

which is accessible to heterotrophic microorganisms and can support secondary 

production in the microbial loop [25]. Many experimental studies have shown that 

protistan grazing can strongly influence the morphological, physiological and 

phylogenetic composition (reviewed by Pernthaler [12] and Hahn and Höfle [11]) and 



 18

metabolic activity [16,78,79] of prey communities. Due to high host specificity and rapid 

production rates, viruses are hypothesized to affect the most abundant populations in a 

community, promoting high overall community diversity [15]. The impacts of protistan- 

and viral-mediated mortality on microbial communities’ composition and function have 

garnered significant study recently. On the other hand, the activities of predatory bacteria 

are virtually unconstrained. Indeed, many studies have assumed that bacteria can be 

approximated as a single trophic level with respect to predation pressure [15,25]. 

However, this assumption ignores the trophic diversity known to exist within the 

bacterial domain.  

Predatory bacteria, capable of growing with live bacterial prey as a sole substrate, 

have been detected in and cultured from a wide variety of environments and phylogenetic 

groups [13,14]. The longest-studied predatory bacteria, the myxobacteria and the genus 

Bdellovibrio and its close relatives, belong to the δ-Proteobacteria [35,80], but predatory 

species have also been characterized from the α-, β- and γ-Proteobacteria 

[30,37,65,68,70,72] and the phyla Chloroflexi [33], Bacteroidetes [45] and 

Actinobacteria [42]. These well-characterized predatory species have been cultured from 

soils, estuaries, rivers, lakes, bogs and marine and freshwater sediments, and have been 

detected using PCR-based techniques in an even wider range of environments, including 

groundwater, human skin and hydrothermal vents. In addition to these relatively well-

studied predatory bacteria, a growing number of less well-characterized lytic bacteria 

have been reported in culture, microscopy and stable-isotope probing studies 

[57,58,59,66,81,82,83]. Many of these potentially predatory bacteria belong to genera 

such as Cytophaga, Pseudoalteromonas, and Alcaligenes which, while actively studied, 

had not been previously thought to include predatory species [57,82,83]. 

Predatory bacteria employ a wide array of predatory mechanisms, ranging from 

the invasion of Gram-negative periplasms carried out by Bdellovibrio and its relatives 

[29] to the production of lytic exoenzymes by myxobacteria [84,85] and some members 

of the genus Lysobacter [70]. Other predatory mechanisms include attachment to prey 

cells coupled with production of a diffusible lytic factor [30,77] and the capture of prey 
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cells by their flagella [45]. Predatory bacteria can be considered obligate or non-obligate 

predators, depending on whether they can assimilate exogenous DOM as a growth 

substrate in addition utilizing live prey. Most described predatory bacteria are non-

obligate predators, the exceptions being members of the genera Bdellovibrio, 

Bacteriovorax and Peridibacter in the δ-Proteobacteria and Micavibrio in the α-

Proteobacteria, which require live prey as their growth substrate.  

The great diversity in the phylogeny and physiology of known predatory bacteria 

makes them difficult to study them as a group using culture-independent techniques. For 

example, some predatory bacteria, such as Ensifer adhaerens, are very closely related to 

non-predatory bacteria [86], which renders 16S-rDNA-based phylogenetic probes 

incapable of distinguishing predatory from non-predatory organisms. In addition, the 

culture-independent study of non-obligate predatory bacteria is complicated by the 

current inability to assess whether an organism was actively lysing prey or merely 

assimilating exogenous DOM at the time of its detection. One recent study [59], designed 

to detect predatory bacteria using 13C-labeled prey bacteria, successfully detected known 

non-obligate predatory bacteria such as myxobacteria and a member of the genus 

Lysobacter, as well as many gene sequences belonging to groups of bacteria containing 

no well-characterized predatory species. However, this approach is complicated by the 

fact that predatory bacteria are unlikely to be the only assimilators of lysed prey biomass, 

resulting in the possibility of uptake of 13C-labeled biomolecules by non-predatory 

heterotrophs.  

In order to assess the efficacy of culture-independent approaches for the detection 

of predatory bacteria and to examine the environmental and ecological significance of the 

functional guild as a whole, a wider range of predatory bacteria needs to be isolated and 

characterized. With this goal in mind, we conducted a study to identify the presence and 

diversity of culturable predatory bacteria from a coastal aquifer on Cape Cod, MA. This 

site contains a variety of chemical niches [87,88,89] in a surface-rich environment which 

could provide substrate for microbial communities supporting a variety of predatory 

bacteria. Aquifers have been found to harbor significant protist communities, as reviewed 
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by Novarino et al. [90], but other than the detection of Bdellovibrio in a groundwater-fed 

cave [91], other sources of top-down bacterial mortality have not been extensively 

studied in groundwater systems.  

 

Materials & Methods 

Field collection: A vibrocorer was used to sample aquifer sediments beneath the 

intertidal zone at the Waquoit Bay National Estuarine Research Reserve, Cape Cod, MA, 

in November 2007. The Cape Cod aquifer is primarily composed of fine to coarse sand 

and gravel [92]. A mixing zone between fresh groundwater and sea water intruding into 

the aquifer from the head of the bay results in a steep, tidally and seasonally influenced 

salinity gradient [87,89,93] providing a variety of chemical environments. Before coring, 

a piezometer profile was taken, sampling every six inches, to locate the salinity gradient. 

A vibrocoring rig and four-inch-diameter aluminum barrels, rinsed with sea water from 

the intertidal zone, were used for coring within the intertidal zone at the head of Waquoit 

Bay. The core barrel was split lengthwise with an electric saw and sediment collected at 

four-inch depth intervals from the center of the core using flame-sterilized spatulas. The 

sediment samples were transported to the laboratory in autoclaved glass jars on ice and 

kept refrigerated for less than 24 hours before being sampled for culturing.  

Reference and prey bacterial cultures: Tenacibaculum discolor DSM 18842, T. 

gallaicum DSM 18841, Kocuria kristinae DSM 20032, Pseudomonas putida DSM 50906 

and Planctomyces maris DSM 8797 were obtained from the German Collection of 

Microorganisms and Cell Cultures (DSMZ). Bacillus subtilis PY79 was kindly provided 

by Tonja Bosak, Saccharomyces cerevisiae by Lynn Miller, Flavobacterium johnsoniae 

by Mark McBride, Shewanella oneidensis MR-1 by Dianne Newman, P. corrugata by 

Edouard Jurkevitch and Escherichia coli JM109 by Daniel Rogers. Olleya marilimosa 

strain CAM030T was kindly provided by Carol Mancuso Nichols. Nitrosomonas sp. C-

113a (Red Sea isolate) is maintained in the lab of Karen Casciotti. Halomonas 

halodurans is maintained in the lab of Elizabeth Kujawinski (originally isolated by G 

Jones, University of New Hampshire). Unless otherwise noted, all reagents were obtained 
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from Thermo Fisher Scientific, Inc., Waltham, Massachusetts, USA. The details of the 

culture media used are described in the supplemental material.  

Predatory culture isolation and purification: We prepared bacterial prey for 

initial enrichment and isolation from cultures of Serratia marcescens, S. oneidensis MR-1 

and Nitrosomonas sp. C-113a, grown as described in the supplemental material. Cultures 

of S. oneidensis and S. marcescens were harvested by centrifugation and washed three 

times in HEPES buffer at a salinity of 20. The final cell suspension represented a twenty-

fold concentration of the original culture. As a result of relatively low cell densities, 

Nitrosomonas sp. C-113a was handled differently – 300 to 500 mL of a stationary phase 

culture was filtered onto a 0.2 μm filter and resuspended in its own sterile medium, with a 

final concentration factor of at least a hundred-fold. The bacterial prey smears were 

prepared by spreading 30 μL of the concentrated prey suspension over an area about one 

centimeter wide and several centimeters in length on no-nutrient water agar containing 

cycloheximide (WCX agar) [34]. Cycloheximide was included in the initial enrichment 

agar to prevent fungal growth, but was excluded after the first two to three transfers. The 

smears were allowed to dry before inoculation with sediment aliquots.  

Small (approximately thimble-sized) aliquots of sediment, taken from different 

depths in the sediment core, were placed directly at one end of bacterial prey smears. 

After inoculation, plates were observed every one to three days using a dissecting 

microscope at magnifications of 6X and 12X. Swarms associated with unambiguous 

clearing of the prey smear were transferred to fresh prey smears by cutting out a small 

block of agar from the leading edge of the swarm with a sterile syringe needle. 

Purification was accomplished by transfer of the freshest, leading edges of expanding 

swarms to new prey smears at least ten times and then to dilute nutrient agar (DNa; see 

recipe in supplemental material), from which isolated colony morphologies were 

repeatedly transferred. Purity was assessed by phase-contrast microscopy using a 100X 

oil-immersion objective lens of wet-mounted slides from agar chunks of spreading 

swarms, direct sequencing of 16S rRNA gene PCR products with the general primer 

1492R (5’- GGT TAC CTT GTT ACG ACT T-3’), and colony morphology on DNa. 
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Cultures were maintained non-predatorily on DNa of the appropriate salinity and 

predatorily on water agar without cycloheximide (WAT) once fungal contaminants had 

been eliminated. Two salinities were used for the initial enrichments to represent the 

salinity range of the sampling site: one using deionized water, and the other substituting 

artificial sea water (ASW, recipe in the supplemental materials) for 71.5% of the final 

volume to reach a final salinity of about 25. 

Culture experiments: The production of lytic exoenzymes by VCSA23 was 

tested by resuspending a live S. oneidensis cell concentrate in the cell-free supernatant 

from a heterotrophically grown VCSA23 stationary-phase culture, grown in Marine 

broth. The cell-free supernatant was obtained by pelleting the VCSA23 cells by 

centrifugation and then filtering the collected fluid through a 0.2-μm syringe filter. The S. 

oneidensis culture was split into two equal volumes and harvested by centrifugation. One 

of the resulting pellets was resuspended in spent Marine broth from VCSA23 (10 mL) 

and the other was resuspended in the spent Marine broth from the S. oneidensis culture 

(10 mL). The absorbance of the two suspensions was monitored by spectrophotometry 

over the course of two weeks relative to sterile Marine broth.  

Unless specified otherwise, DN broth with a salinity of 25 was used as a basal 

medium for non-predatory growth tests, and WAT with a salinity of 25 (WAT25) was 

used as a basal medium for predatory growth tests with S. oneidensis MR-1 as the live 

prey organism. Pasteurized prey smears were also used as a predatory growth substrate, 

prepared by exposing the S. oneidensis prey to 70°C for at least 15 minutes followed by 

normal washing procedures as described above.  

Both predatory and non-predatory growth of VCSA23, VCSM12 and VCSA14A 

were tested at five different temperatures (4°C, 15°C, 23°C, 30°C and 37°C) and 

salinities (0, 10, 20, 25 and 30). The response of the three strains to increasing 

concentrations of organic matter was also assessed by growing them on WAT25 amended 

with 0.01, 0.1 or 1 gram of yeast extract per liter with pasteurized S. oneidensis MR-1 

prey washed and concentrated to about 10 times the stationary culture cell density (final 

concentration about 1010 cells/mL). Degradation of casein and starch by the three isolates 
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and O. marilimosa, T. discolor and T. gallaicum were tested by inoculation onto FMM 

agar [94,95], prepared in the same seawater matrix as WAT25 and amended with 0.4% 

w/v casein or starch. Requirement for sea salts was tested by growth on DN agar at 25 ppt 

salinity with only sodium chloride as a salt.  

Prey specificity was tested by inoculating each test strain onto live smears of each 

prey organism, prepared by repeated centrifugation and resuspension as described above, 

except for Nitrosomonas sp. C-113a and P. maris, which were concentrated by filtration. 

Two different prey densities were tested for many of the other prey organisms – about 10 

times the prey’s stationary phase cell density and about one tenth the prey’s stationary 

phase cell density. Clearing presence and progress was monitored every two to three days 

via dissecting microscope. A strain was scored as predatory on a particular prey organism 

if macroscopically visible clearing expanded progressively in either of the replicate 

smears for the test prey.  

To facilitate observation of the predatory behavior and spatial relationships 

between predators and prey, cultures were grown on autoclaved polycarbonate membrane 

filters (Millipore, Billerica, MA; 0.2 μm pore size) placed onto WAT25 and analyzed by 

fluorescent in-situ hybridization (FISH) and confocal microscopy. 180 μL of S. 

oneidensis live cell suspension was spread evenly onto the filters using a pipet tip. In 

parallel, prey was applied in the same manner directly onto the agar to facilitate the 

monitoring of clearing progress during the experiment. Excess fluid from the suspensions 

was allowed to absorb overnight. For each predatory strain tested (strains VCSA23, 

VCSM12, VCSA14 and T. gallaicum A37.1T), a small agar block covered with the strain 

in question was inoculated onto the center of the prey-covered membrane filters, as well 

as onto prey spots on the agar. Each experiment included three replicate plates per 

predatory strain, with each plate containing two prey-covered filters inoculated with 

predator, one filter inoculated with predator only and two filter-less prey spots, one 

inoculated with predator and one not. In addition, a separate plate contained prey-covered 

filters which were not inoculated with predator. The experiment was monitored daily by 

checking the filter-less predator + prey spots using a dissecting microscope.  
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Once clearing zones of approximately 1-cm diameter had developed 

(approximately three days after predator inoculation), one predator + prey filter from 

each plate and three prey-only filters were fixed and frozen. When clearing zones in the 

filter-less predator + prey spots came close to the edges of the prey lawns, the remaining 

filters were fixed and frozen (after five days for strains VCSA23, VCSM12 and 

VCSA14A and after 12 days for T. gallaicum). Filters were fixed in Petri dishes using 

4% paraformaldehyde in phosphate-buffered saline (PBS; for recipe see supplemental 

material) for one to two hours at 4°C. Filters were washed by successive transfer through 

three Petri dishes containing PBS, with full immersion in each dish for at least five 

minutes at room temperature. After washing, each filter was dipped into a 1:1 mixture of 

PBS and ethanol and dried in a Petri dish before freezing at -20° C.  

16S rRNA gene sequencing: Cells from strains VCSA23, VCSM12 and 

VCSA14A were suspended in HEPES buffer at a salinity of 20 and frozen at -20° C. 

Thawed suspensions (1 μL per reaction) were used as the template for polymerase-chain-

reaction (PCR) amplification. General bacterial 16S rRNA primers (10 μM; 27F: 5’- 

AGA GTT TGA TCC TGG CTC AG -3’, 1492R) and 2X GoTaq Green Master Mix 

(Promega, Madison, WI) were used in the reaction mixes. Thermal cycling was 

performed under the following conditions: denaturation at 94°C for two minutes followed 

by 30 cycles of denaturation at 94°C for 30 seconds, annealing at 47°C for 90 seconds 

and extension at 72°C for three minutes followed by a final extension of 10 minutes at 

72°C. PCR products were checked for single, coherent bands of the appropriate size 

(about 1500 base pairs) by agarose gel electrophoresis and ethidium bromide staining.  

Full-length 16S rRNA gene sequences (about 1500 base pairs) were cloned from 

VCSA23, VCSM12 and VCSA14A using the pGEM®-T Easy cloning kit (Promega 

Corp., Madison, WI) according to the manufacturer’s instructions. For each strain, 16 

colonies were picked and grown up overnight in LB at 37°C with shaking at 180 rpm. No 

colonies were recoverable from the VCSM12 clone library, which was not further 

pursued due to the high similarity between the partial 16S rRNA gene sequences of 

VCSM12 and VCSA23. Cells were collected by centrifugation and plasmids were 
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extracted and purified by a Beckman-Coulter BiomekFX alkaline-lysis plasmid 

preparation machine and used as template in two parallel sequencing reactions with the 

M13F (5’- GTA AAA CGA CGG CCA G -3’) and M13R primers (5’- CAG GAA ACA 

GCT ATG AC -3’), respectively. Partial sequences (600-800 base pairs) were acquired 

for strain VCSM12 by using the full-length PCR product as the template for sequencing 

with the 1492R primer after purification with the Wizard SV PCR Cleanup Kit (Promega, 

Madison, WI). Sequencing reactions were carried out in 6-μL volumes using Applied 

Biosystems BigDye 3.1 chemistry. All sequencing was performed using an Applied 

Biosystems 3730XL capillary sequencer at the Josephine Bay Paul Center at the Marine 

Biological Laboratory in Woods Hole, MA.  

Phylogenetic analysis: Bases were called and vector sequences were trimmed 

from the 16S rRNA gene clone sequences using the Ribosomal Database Project pipeline 

[96,97]. The trimmed sequences were imported into ARB [98, version December 2007] 

and aligned to closely related sequences in the Greengenes ARB database [99] using the 

ARB aligner. The ARB editor was used to construct consensus sequences from cloned 

16S rRNA gene sequences for each half of the full 16S rRNA gene, which were then 

exported to FASTA files and manually merged into a single consensus full-length contig 

and imported into the Silva Reference database [100, SSURef 97 release]. The full-length 

consensus sequences from VCSA14A and VCSA23 and a partial sequence from 

VCSM12 have been deposited in GenBank under the accession numbers GQ996383, 

GQ996384 and GQ996385, respectively. The percent similarity between the full-length 

consensus 16S rRNA gene sequences of VCSA23 and VCSA14A, the approximately 

750-base-pair partial sequence of VCSM12 and their closest relatives was determined 

using the “Align two sequences” function of the Basic Local Alignment Search Tool 

(BLAST) [101].  

The full-length consensus sequences for strains VCSA23 and VCSA14A were 

aligned with the ARB aligner  and manually checked against the 16S rRNA sequences of 

204 species of marine flavobacteria in the Living Tree Project database release 100 [102]. 

The 16S rRNA sequence of O. marilimosa CAM030T was obtained from Genbank and 
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aligned in the Living Tree Project database as well. A positional conservancy filter was 

calculated using the filter by base frequency method in ARB at 30% minimal similarity, 

then manually checked against the 207 aligned sequences and ultimately included 1,266 

positions present and aligned in all sequences. Trees were constructed and compared in 

ARB using the neighbor-joining (ARB), maximum likelihood (RAxML v7.04 [103]), and 

maximum parsimony (DNAPars v1.8 [104]) methods. A smaller set of 76 species was 

exported using the conservancy filter for tree-building in PHYLIP. Trees were built using 

the neighbor-joining, maximum likelihood and maximum parsimony methods in PHYLIP 

[104]. The maximum-likelihood tree was converted to an extended post script file using 

the PHY·FI online tree drawing tool and manually formatted in Adobe Illustrator. 

Bootstrap values were obtained for 100 replicates for the maximum likelihood tree in 

PHYLIP. 

Probe design and optimization: Oligonucleotide probes were designed using the 

Probe Design tool in ARB [98] in the Greengenes database [99] and their specificity 

checked using BLAST [101]. The VCSA23 probe (5’- GTC ATC TCT CAC CGT AAC 

CT -3’) is also an exact match for VCSM12, but not to any other sequences in GenBank. 

The VCSA14A (5’- ACC GAT CTC TCA GTC TGT CAC TCT AC -3’) probe matches 

T. discolor and T. litoreum exactly, but no other sequences in GenBank. O. marilimosa 

CAM030T and T. gallaicum A37.1T have single mismatches to the VCSA23 and 

VCSA14A probes, respectively, and were used as negative controls during probe 

optimization experiments. Both probes were determined to be specific to the single 

mismatch level at a formamide concentration of 35%, although the VCSA14A probe did 

exhibit weak hybridization to T. gallaicum cells at formamide concentrations up to 50% 

(data not shown). This was not a concern for the two-strain predator/prey tests described 

here, but could be significant if the VCSA14A probe is used on environmental samples. 

Finally, neither VCSA23 nor VCSA14A probes hybridized to fixed suspensions of S. 

oneidensis with 35% formamide in the hybridization buffer. The GAM42a probe [105], 

specific to the large subunit of the ribosomal RNA of β- and γ-Proteobacteria, was used 
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as a prey-specific probe since it hybridized reliably to S. oneidensis cells but not to 

VCSA23 or VCSA14A cells at 35% formamide.  

In all cases, FISH was carried out on whole membrane filters by placing them on 

a microscope slide and pipetting 300 μL of hybridization buffer (35% formamide) and 9 

μL of each probe’s working stock (GAM42A conjugated with fluorescein and a predator 

probe conjugated with Cy3 on each filter as appropriate; 100 ng/μL) onto each filter. 

Hybridization and wash buffers and probe stock solutions were prepared according to 

previously published protocols [106]. The slides were hybridized in 50-mL centrifuge 

tubes prewarmed to 46°C with hybridization-buffer-soaked Kim-wipes inside. 

Hybridization was conducted at 46°C for two to three hours before removing the filters 

from the humidification chambers and gently placing them in Petri dishes filled with 

wash buffer and treating them as described elsewhere [106]. To hybridize filters 

inoculated with T. gallaicum, which has a single mismatch with the VCSA14A probe, 

hybridization buffer containing 0% formamide was used. After hybridization, each filter 

was mounted with a small drop of DAPI mountant mix [107] on a precleaned microscope 

slide with a large coverslip (24 by 50 mm) and kept at 4°C in the dark until imaging.  

Confocal microscopy: While control slides were examined using a Zeiss 

Axioplan 2 microscope, experimental filters were imaged on a Zeiss LSM 510 META 

NLO confocal microscope using 488-nm Argon gas and 543-nm Helium-Neon gas lasers 

and a Zeiss Plan-Apochromat 63X oil-immersion objective with a numerical aperture of 

1.4. In most cases, the filter was initially explored in fluorescence mode using a mercury 

lamp to visualize DAPI, Cy3 and FITC labels and to mark locations of interest in the 

LSM software for later imaging. Detector gain and amplifier offset settings were 

manually optimized on each filter in response to varying signal-to-noise ratios between 

filters. Cy3 and FITC image z-stacks were collected in frame scanning mode using the 

averaging method over four scans at either 1024-by-1024 or 2048-by-2048 pixel 

resolution. For each stack, slices were captured at 0.5 μm intervals and pinhole settings 

were optimized for one airy unit. Images were collected primarily in transects crossing 

the predatory-prey interaction zones.  
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Image analysis: Z-stacks were exported as tiff files using the Zeiss LSM Image 

Browser version 4.2.0.121 and imported into the daime digital image analysis tool, 

version 1.2 [108]. The histogram stretch and noise reduction tools of daime were used to 

improve the contrast between cells and filter backgrounds. The same settings were used 

for all images collected in a given channel from a particular filter. Two-dimensional 

image projections were then calculated using the maximum intensity projection tool of 

daime and exported to the tiff file format for display. Scale bars were added manually 

using Adobe Photoshop.  

For labeled cell volume measurements, sub-transects of 128-by-128 pixel stacks 

were cropped from selected full image stacks (1024-by-1024 pixels) in transects using 

Adobe Photoshop and individually processed in daime using the same settings for 

histogram stretch and noise reduction as for the larger image stacks. The cropped image 

stacks were segmented using the 3D segmentation tool in daime with the edge detection 

algorithm, ignoring any putative objects of 5 voxels or smaller. Volumes for each channel 

in each cropped image stack were measured using daime’s measurement tool.  

 

Results 

Predatory activity: Live bacterial prey were used as a sole carbon source to 

isolate three  strains of predatory bacteria, designated VCSA23, VCSM12 and 

VCSA14A, from a Cape Cod aquifer. These isolates generated macroscopic clearing 

zones in a variety of live and pasteurized bacterial prey smears and swarmed beyond the 

prey smears on water agar. In addition, two already-described species closely related to 

strain VCSA14A, T. discolor and T. gallaicum, also cleared prey smears. Figure 1 

contains images of typical macroscopic clearings caused by T. gallaicum and strains 

VCSA23, VCSM12 and VCSA14A on live prey lawns of S. oneidensis. O. marilimosa 

strain CAM030T, which is closely related to strains VCSA23 and VCSM12, did not 

generate any clearings on the same prey bacteria. We cannot currently determine if O. 

marilimosa CAM030T was never predatory or if it has lost its predatory capability in 

culture. 
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The predatory specificity of the five strains was tested on 11 prey organisms 

selected on the basis of cell wall structure and taxonomic diversity (Table 1). Strains 

VCSA23 and VCSM12 had the broadest prey specificity of the strains tested, showing 

unambiguous and expanding clearing on smears of all but three of the prey organisms 

onto which they were inoculated. With the Gram-positive K. kristinae and the yeast S. 

cerevisiae, clearing zones developed around the inoculum site and expanded to varying 

degrees before ceasing growth well short of full prey consumption. Neither strain cleared 

H. halodurans. The three Tenacibaculum strains (VCSA14A, T. discolor LL04 11.1.1T 

and T. gallaicum A37.1T) displayed narrower specificity than strains VCSA23 and 

VCSM12. Strain VCSA14A had the narrowest prey specificity tested, unambiguously 

clearing only S. oneidensis and F. johnsoniae. T. discolor and T. gallaicum each cleared 

both of those prey as well as B. subtilis, E. coli and, in the case of T. gallaicum, 

Nitrosomonas sp. C-113a. None of the three Tenacibaculum strains visibly cleared K. 

kristinae, P. maris, S. cerevisiae or any of the pseudomonads tested. Like the Olleya 

strains, none of the Tenacibaculum strains affected H. halodurans. All five strains were 

also found to be non-obligate predators, capable of growing heterotrophically on complex 

organic media.  

Since predatory bacteria are known to employ a variety of lytic mechanisms 

[13,14], the predatory flavobacteria were further investigated to constrain the mechanism 

of prey lysis. We investigated the possibility that lytic exoenzymes are released into 

culture fluid by the predator, as has been observed for a Lysobacter species [70]. In our 

study, live S. oneidensis cells were resuspended into cell-free culture supernatant 

collected from a stationary-phase broth culture of VCSA23. No decrease in cell density 

was observed relative to a control culture resuspended in spent media from S. oneidensis 

(data not shown), suggesting that the enzymes responsible for cell lysis either (1) are not 

released extracellularly by VCSA23 or (2) are not expressed during non-predatory 

growth of VCSA23.  

We also explored the possibility that direct cell-to-cell contact was required for 

prey lysis. Live cell microscopy was used in an attempt to visualize lytic events caused 
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by cell contact between individual cells of all three isolated strains and the S. oneidensis 

prey. The predators frequently exhibited gliding motility on slides in wet mount 

preparations, but no direct lysis of prey cells by single predator cells was observed. 

However, it is possible that the wet mount environment is not conducive to predatory 

activity (or its observation) due to a number of factors, such as low predator cell density 

or disturbance associated with preparation of a wet mount slide.  

In order to facilitate imaging of predator-prey spatial relationships with a 

minimum of physical disturbance, membrane filters were used as a growth surface for 

three- to five-day incubations and visualized using FISH. The two sets of predatory 

flavobacteria (Olleya sp. VCSA23 and VCSM12 and Tenacibaculum sp. VCSA14A and 

T. gallaicum A37.1T) exhibited different patterns of prey clearing when visualized at high 

magnification. On prey-coated filters inoculated with strain VCSA23, a decrease in prey 

abundance was observed coincident with the position of a dense, expanding front of 

VCSA23 cells (Figure 2). Measurements of labeled prey and predator biovolume show 

that S. oneidensis cell volume decreased by approximately two orders of magnitude 

within about 150 μm crossing into the predator swarm (Figure 2). At least one millimeter 

inward from the main interaction zone, both VCSA23 and VCSM12 formed very dense 

round aggregates with small central hollows. These aggregates appeared to expand over 

time to become a dense mass of predator cells (Figures S1 and S2). However, despite 

extremely high densities of predator cell in the aggregates, a small number of prey cells 

were still present. Strain VCSM12 showed a broadly similar pattern, with predator cells 

eventually clearing most, but not all of the prey cells.  

On filters inoculated with strain VCSA14A, prey cell density dropped quickly to 

very low levels coincident with the predator cell front (Figure 3), with most of the drop in 

S. oneidensis volume complete within 50 μm. Strain VCSA14A’s cell front had a visibly 

lower density than that of strain VCSA23 (approximately six times less labeled cell 

volume), and no dense aggregates of VCSA14A cells could be found in the cleared areas 

of the filter. Instead, low densities of small spherical cells labeled with the VCSA14A-

specific probe were observed (Figure S3). Such shortened, often spherical cells have been 
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frequently reported from older, late exponential or stationary phase cultures in several 

Tenacibaculum species [94,109,110,111], and may represent a dormant life stage. T. 

gallaicum A37.1T was observed to have a similar pattern of predation on S. oneidensis 

cells (Figure S4).  

For all strains tested, at least a few cells hybridizing with the prey-specific probe 

could be found in cleared areas, suggesting that not all susceptible prey cells are lysed. In 

addition, small numbers of scattered predatory cells were observed well in advance of the 

main density fronts for all four strains. Despite this, the areas ahead of the predator 

density fronts appeared essentially identical to prey lawns on control filters that never 

received predatory bacteria. A general tendency of higher prey cell volumes in close 

proximity to predatory cell fronts was observed on most filters. We attribute this to the 

regrowth of prey cells on DOM released from neighboring prey cell lysis at and behind 

the predatory cell front.  

 Since VCSA23, VCSM12 and VCSA14A are non-obligate predators, we 

examined whether their lytic behavior was affected by availability of exogenous DOM 

using yeast extract as a complex DOM source. All three strains cleared the pasteurized 

prey smears at all of the DOM concentrations tested. However, the growth habits of 

strains VCSA23 and VCSM12 changed from a swarming growth habit with filamentous 

margins to a thick, slimy growth habit with smooth-edged, entire margins at the highest 

DOM concentration tested (0.1% w/v yeast extract). In contrast, strain VCSA14A 

retained a swarming growth habit with filamentous margins at 0.1% yeast extract. Strain 

VCSA14A did, however, switch to a thicker growth habit with initially entire edges when 

grown on marine agar, which has a concentration of complex DOM of about 0.6%. These 

results showed that although all three of the tested strains continued to track and lyse 

pasteurized prey cells in the presence of high concentrations of exogenous DOM, they 

changed their social and motility behavior in response to increasing DOM concentrations.  

Phylogenetic analysis: The 16S ribosomal RNA (16S rRNA) gene sequences of 

VCSA23 (1483 base pairs) and VCSM12 (three partial sequences between 708 and 756 

base pairs) are nearly identical, with 99% identity between the overlapping regions of the 
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full-length consensus sequence for VCSA23 and the partial sequences for VCSM12, 

suggesting that they may be two strains belonging to a single species. Phylogenetic 

analysis based on 1,299 well-aligned base pairs of the 16S rRNA gene sequences 

indicates that VCSA23 belongs to the genus Olleya (Figure 4). The 16S rRNA gene 

sequence of VCSA23 is 97% identical to O. marilimosa CAM030T, which is the only 

described species in the genus [112]. These levels of 16S rRNA gene sequence identity 

suggest that VCSA23 and VCSM12 could represent a second species in the Olleya genus, 

given the often-used threshold of 97% identity in this marker gene for species-level 

differentiation. The next closest cultured relative on the basis of 16S rRNA gene 

sequence is Lacinutrix algicola, which is 95% identical to VCSA23.  

The 16S rRNA sequence (1486 base pairs) of the third isolate, VCSA14A, is 89 to 

91% identical to those of VCSA23 (full length) and VCSM12 (partial), respectively. It 

branches tightly within the genus Tenacibaculum, and is most closely related to the 

recently described species T. discolor, T. gallaicum [95], and T. litoreum [113], which are 

99%, 97% and 99% identical to VCSA14A in their 16S rRNA gene sequences, 

respectively (Figure 4).  

Physiology: Physiological tests used to compare the three newly isolated strains 

with other closely related cultured strains are shown in Table 2. With respect to the 

physiological characteristics tested, strains VCSA23 and VCSM12 are both very similar 

to their closest cultured relative, O. marilimosa strain CAM030T. These three strains have 

gliding motility, are mesophiles incapable of growth at 37°C and require at least some 

salt for growth. In fact, the only major characteristics assessed in which the two predatory 

strains differ from strain CAM030T is the ability to grow by lysing prey bacteria and a 

requirement for sea salts. Their next closest cultured relative, L. algicola strain AKS293T, 

cannot glide, is incapable of growing at 30°C and does not require salt [114]. Strain 

VCSA14A was found to be very similar to its closest relatives, T. discolor strain LL04 

11.1.1T, T. litoreum strain CL-TF13T and T. gallaicum strain A37.1T. All four strains 

possess gliding motility, are capable of growth at 37°C and are incapable of utilizing 

either (+)-D-glucose or citrate as sole carbon sources with ammonia and nitrate as 
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nitrogen sources. All six of the strains tested in this study were unable to degrade starch 

with ammonia and nitrate as nitrogen sources but were able to degrade casein, exhibiting 

clearing halos indicative of diffusible proteases on casein FMM agar plates.  

 

Discussion  

Surface-associated predatory flavobacteria such as those described in this study 

could influence the biogeochemistry of a wide variety of environments. In a manner 

similar to that already known for predatory protozoa [11,12], they could increase the 

mobility and cycling of organic matter and suppress or stimulate particular members of 

microbial communities. The strength and persistence of such an influence is dependent 

on a variety of factors, including the accessibility of susceptible prey and details of the 

predatory biology of particular predatory flavobacteria present, such as the breadth of 

their prey specificity and environmental cues that either stimulate or discourage predatory 

activity. The isolates described in this study are undergoing further characterization with 

respect to their predatory biology. In addition, the discovery that two type strains of the 

genus Tenacibaculum are predatory raises the possibility that existing culture collections 

may contain clues as to the phylogenetic distribution of additional predatory bacteria.  

This study provides the first definitive evidence for predatory activity within the 

class Flavobacteria. Flavobacteria are found in a wide variety of habitats, including 

seawater [115], lakes [116,117], marine sediments [118,119], polar sea ice [120] and 

hydrothermal settings [121]. This group has been reported as being important in the 

degradation of polymeric substances in aquatic environments [122,123,124,125]. They 

are also frequently associated with particulate matter in the oceans [126,127], as well as 

with phytoplankton and bacterial blooms [117,128]. If some fraction of the flavobacteria 

in these habitats is accessing living biomass as a growth substrate, our observations have 

broad implications for the role of flavobacteria in microbial ecology and 

biogeochemistry.  

Our results suggest that the predatory flavobacteria described in this study might 

employ a lytic mechanism requiring at least close proximity, if not direct contact, to prey 
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cells. Many myxobacteria and some members of the genus Lysobacter release 

constitutively produced lytic exoenzymes [70,71,84,85,129]. Although all of the strains 

produced diffusible proteases (Table 2), the culture supernatant of strain VCSA23 

showed no lytic activity (data not shown). This suggests either that the production of lytic 

exoenzymes is contingent on the presence of prey cells or that they are not released 

extracellularly. If lytic enzymes are not released extracellularly, they may be membrane-

associated similarly to those commonly found in genomic and biochemical studies of 

marine flavobacteria [130,131,132,133]. Further study is needed to fully constrain the 

lytic mechanism of the predatory flavobacteria.  

The diversity in prey specificity displayed by the strains tested in this study 

suggests varying degrees of specialization within the predatory flavobacteria, as has been 

found for other predatory bacteria [29,64,134,135,136]. At least with respect to the prey 

species and growth conditions assayed here, the strains VCSA23 and VCSM12 appear to 

be more cosmopolitan in terms of susceptible prey than the Tenacibaculum strains. Their 

range of susceptible prey was very broad, with only H. halodurans proving completely 

impervious (Table 1) under the conditions tested. Even among the Tenacibaculum strains, 

all of which are very closely related to each other according to 16S rRNA analysis, there 

was considerable diversity in prey specificity. In fact, no two Tenacibaculum strains had 

the same prey specificity profile. Prey specificity may be related to the predators’ 

mechanism of lysis and to physiological or chemical characteristics of the prey under the 

tested conditions. It is clear from the prey specificity profiles that the cell wall structure 

of the prey is not a dominant factor in prey susceptibility to the predatory flavobacteria. 

Four out of the five predatory strains tested were found to lyse both Gram-negative and 

Gram-positive prey. Despite the susceptibility of S. oneidensis to all the predatory strains 

tested, at least one other member of the class γ-Proteobacteria proved to be resistant to 

predation by each predator. Since the lytic mechanism of these predatory flavobacteria 

appears to require direct contact (or at least close proximity) with prey, other prey 

characteristics may be important, including the production of extracellular polymeric 
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substances, the presence or absence of specific proteins or compounds on the prey cell 

surface or the production and release of compounds antagonistic to predator cells.  

Interestingly, the images collected from cleared zones of prey lawns on membrane 

filters indicate that S. oneidensis prey is not completely eliminated by any of the 

predators tested (Figures 2, 3, S1-S4). Although incomplete elimination of prey 

populations has been commonly observed for obligate planktonic predators, such as 

Bdellovibrio [54,136,137], it has often been assumed that gliding predators such as 

myxobacteria completely lyse their local prey populations [135]. However, attempts to 

assess prey survival after myxobacterial predation have shown that complete elimination 

of prey cells is rare [31,138] and that a small number of viable prey cells can be 

recovered after the lysis of more than 99% of the original prey population. The basis for 

predatory resistance of these surviving cells is currently unknown, whether it be from 

genotypic or phenotypic differences from lysed prey cells. A minority of prey cells under 

Bdellovibrio predation have been shown to develop a temporarily increased resistance to 

predatory attack, termed plastic phenotypic resistance [54]. Prey populations under attack 

by gliding non-obligate predators, such as myxobacteria and the flavobacteria in this 

study, may undergo a similar physiological change in which a small subset become 

temporarily resistant to predation. Another, less studied, possibility is that the predatory 

flavobacteria may stop active predation in response to external factors, such as nutrient 

concentration or prey cell density. Either possibility could serve as a mechanism that 

allows prey populations to escape complete elimination by bacterial predation.  

In addition to differences of prey specificity, the tested predatory strains displayed 

contrasting growth efficiencies. As represented in Figures 2 and 3, the same density of 

prey cells presented to and lysed by the different predator strains resulted in an order of 

magnitude more cells (as measured by total volume) of Olleya sp. VCSA23 (Figure 2) 

and VCSM12 (Figure S2) than those of Tenacibaculum sp. VCSA14A (Figure 3) and T. 

gallaicum A37.1T (Figure S4). Although both sets of predators were responsible for 

approximately the same amount of prey lysis, the lower predation efficiency of the 

Tenacibaculum strains suggests that they may be unable to assimilate as much prey 
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biomass as the Olleya strains. Both T. discolor and T. gallaicum, as well as other 

members of the genus Tenacibaculum, have been reported to be unable to assimilate a 

variety of sugars [94,95,113,139] while the closest relative to strains VCSA23 and 

VCSM12, O. marilimosa CAM030T, has been described as utilizing several sugars [112]. 

This suggests that the predatory Olleya strains could owe their higher predation 

efficiency to a broader capacity for carbohydrate assimilation. However, carbohydrates 

generally compose a minority of bacterial cell dry weight – less than 10% in E. coli, as 

reviewed by Neidhardt et al. [140] – and so seem unlikely to be solely responsible for the 

large differences in predatory cell density between the strains. The Tenacibaculum and 

Olleya strains may also differ in their hydrolytic capabilities, with Tenacibaculum strains 

able to access fewer of the prey macromolecules.  

Determining the prevalence of predation among flavobacterial species remains a 

significant challenge. As mentioned earlier, predatory capability is not a monophyletic 

trait and predatory bacteria can be very closely related to non-predatory species. Non-

obligate predatory lifestyles may have evolved repeatedly and independently from 

saprophytic gliding bacteria [14], both within the class Flavobacteria and in other groups. 

In addition, the utilization of functional gene markers, which has been successful in 

assessing the presence and diversity of other functional guilds, is not possible for 

detecting predatory bacteria at this time. Many of the hydrolytic enzymes presumably 

used by predatory flavobacteria to break down prey macromolecules after cell lysis could 

also be used to break down non-living particulate and dissolved organic matter, and so 

would not be diagnostic of predatory capability. Until an unambiguous functional marker 

for predatory flavobacteria can be identified, culture-based approaches may be the most 

reliable way of establishing whether a particular species is capable of predation. 

Nonetheless, in addition to this study, other reports have presented evidence that 

supports the possibility that predation may not be a rare lifestyle for flavobacteria. For 

example, Tenacibaculum maritimum was described to lyse dead cells of E. coli, 

Aeromonas hydrophila and Edwardsiella tarda [94,109], although it is unclear whether it 

was tested for growth on live prey cells. Kordia algicida has been described to have a 
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strongly algicidal effect on some diatoms and other algae in liquid [141]. At least four 

other types of marine flavobacteria have also shown lytic activity towards eukaryotic 

phytoplankton, though they have not been taxonomically characterized [82,142]. In 

addition, a stable-isotope probing study using 13C-labeled prey cells added to soil 

microcosms detected a flavobacterial 16S rRNA sequence along with sequences 

belonging to known predatory bacteria such as myxobacteria and members of the genus 

Lysobacter within the 13C-labeled RNA fraction [59]. This result suggests that the labeled 

Flavobacterium sp., which took up stable-isotope-labeled carbon from the added prey 

cells, is a predatory bacterium. However, this type of labeling study is ambiguous by 

nature, since it is possible that non-predatory bacteria could have scavenged labeled 

carbon from the prey after it was lysed.  

The results of this study and mounting circumstantial evidence in recent literature 

indicate that predation should be considered as a potential ecological role for 

flavobacteria and other members of the Bacteroidetes. If predatory flavobacteria are 

significant sources of microbial mortality, then flavobacteria as a group cannot be 

accurately treated as equivalent to other, more ‘passive,’ heterotrophic bacteria in 

biogeochemical models as some may represent a higher trophic level. In other words, 

these results argue that the bacterial size fraction in aquatic environments can possess 

significant trophic complexity, with potential consequences for the efficiency of 

biogeochemical cycling.  
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Figure 1: Photographs of typical predatory clearings of prey lawns. The predatory 
inoculum (a chunk of agar from a previous culture), is at the center of each panel (black 
arrow). Each inoculum is surrounded by a roughly circular cleared zone, the expanding 
edge of which is indicated by a white arrow. Beyond the edge of each clearing edge is a 
lawn of live S. oneidensis prey on WAT25. The photographs of strains VCSA23, 
VCSM12 and VCSA14A were taken of three-day-old cultures while the photograph of T. 
gallaicum strain A37.1T is of a five-day-old culture.  
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Figure 2: (A) Two-dimensional confocal projections of VCSA23 cells (labeled with the 
VCSA23-Cy3 probe, top, in red) and S. oneidensis prey (labeled with the GAM42a-FITC 
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probe, bottom, in green). From left to right are shown the most recently cleared zone, the 
interface between the expanding VCSA23 cell front and the prey lawn, and the prey lawn 
relatively undisturbed by VCSA23 cells. All scale bars are 10 μm. In the lower graph (B), 
labeled cell volume data are plotted against the transect coordinate using a section of the 
collected images, delineated by white boxes on the 2-D projections in (A). Each point 
was calculated from a 321-μm2 square. The volumes of GAM42a-FITC-labeled cells (S. 
oneidensis) are plotted with green squares while the VCSA23-Cy3-labeled cell volumes 
(strain VCSA23) are represented by red circles. Grey shading in the graph indicates the 
spatial orientation of the 2-D projections shown in (A).  
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Figure 3: (A) Two-dimensional confocal projections of strain VCSA14A cells (labeled 
with the VCSA14A-Cy3 probe, top, in red) and S. oneidensis prey (labeled with the 
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GAM42a-FITC probe, bottom, in green) show, from left to right, the most recently 
cleared zone, the interface between the expanding VCSA14A cell front and the prey 
lawn, and the prey lawn relatively undisturbed by VCSA14A cells. The three sets of 2-D 
projections were acquired adjacent to each other along a transect crossing the VCSA14A 
cell front. The graph at bottom (B) was constructed identically to that in Figure 2B. 
 

 
 
Figure 4: Maximum-likelihood tree showing the phylogenetic relationship between 
strains VCSA23, VCSA14A and other members of the family Flavobacteriaceae based 
on full-length 16S rRNA sequences. The tree was built from an alignment containing the 
76 species shown here using 1,266 positions present and aligned in all 76 sequences. 
GenBank nucleotide accession numbers are provided for each sequence in parentheses. 
Numbers at nodes indicate the percent bootstrap support for that node in a 100-replicate 
bootstrap analysis of the maximum-likelihood tree. Open back circles and filled grey 
circles indicate nodes recovered in neighbor-joining and maximum parsimony trees, 
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respectively, built from the same alignment. The scale bar indicates the branch length 
corresponding to 0.1 changes per mean nucleotide position. 
 
 
Table 1: Prey specificity of predatory strains 

Predator species: 
Olleya 

sp. 
Olleya 

sp. 
Tenacibaculum 

sp. 
T. 

discolor 
T. 

gallaicum

Predator strain: VCSA23 VCSM12 VCSA14A 
LL04 

11.1.1T 
A37.1T 

Prey species:      
Shewanella oneidensis 
MR-1 

+ + + + + 

Escherichia coli JM109 + + - + + 
Pseudomonas putida 
DSM 50906 

+ + - - - 

P. corrugata + + - - - 
Halomonas halodurans - - - - - 
Nitrosomonas sp. C113a + + - - + 
Flavobacterium 
johnsoniae 

+ + + + + 

Planctomyces maris  
DSM 8797 

+ + - - - 

Kocuria kristinae  
DSM 20032 

+/- +/- - - - 

Bacillus subtilis PY79 + + - + + 
Saccharomyces cerevisiae +/- +/- - - - 
+: progressively spreading clearing of prey smear observed coincident with swarm 
emergence; -: no clearing observed on prey smear. +/-: some clearing observed, but 
ceases expanding shortly after leaving original inoculum area.  
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Table 2: Physiological characteristics of predatory strains and close relatives 

Species:   Olleya 
marilimosa  

Lacinutrix 
algicola 

 T. discolor T. 
litoreum 

T. gallaicum T. 
mesophilum 

Strain: VCSA23 VCSM12 CAM030T AKS293T VCSA14
A 

LL04 
11.1.1T 

CL-TF13T A37.1T MBIC 1140T 

Reference: This study This study [112] [114] This study [95] [113] [95] [94] 
Characteristic:          
Gliding 
motility 

+ + + - + + + + + 

Growth at 0 
salinity 

- - - + - - - - - 

Growth at 25 
salinity w/only 
NaCl 

- - + + W W + - + 

Growth at 
30°C 

+ + + - + + + + + 

Growth at 
37°C 

- - - - + + + + + 

Bacteriolytic + + - ND + + ND + ND 
Starch 
degradation 

- - - ND - - + - - 

Casein 
degradation 

+ + +* + + + ND + + 

ND: no data, *: Mancuso Nichols et al. [112] reports no casein hydrolysis, but O. marilimosa strain CAM030T was observed to 
hydrolyze casein in this study, W: weak growth without characteristic swarming at colony edges observed.  
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CHAPTER 3: BIOLOGY OF PREDATORY MARINE FLAVOBACTERIA 

 

Abstract 

Constraining the potential ecological impact of predatory marine flavobacteria 

requires an understanding of the biological factors influencing their grazing activity. 

After the observation of dense predatory swarms in previous experiments, the minimum 

number of predatory cells required to generate clearing of prey cells was investigated and 

found to be on the order of 101 for both Olleya sp. VCSA23 and Tenacibaculum sp. 

VCSA14A. Microscopic observation of the distribution of predator cells within prey 

lawns suggests that incipient swarms form through the aggregation of previously 

independently growing flavobacterial cells, which may be predating as single cells. A 

greater capability for polysaccharide degradation amongst the Olleya strains supports the 

hypothesis that differences in predatory growth yields between the Olleya and 

Tenacibaculum genera are related to differing abilities to access prey biomass. To assess 

the effects of varying culture and prey conditions on flavobacterial predation, a 

multifactorial experiment was conducted with an array of prey treatments suspended in 

varying media and plated on either no-nutrient, starvation agar or a defined, low-nutrient 

agar capable of supporting most of the prey species. Its results suggest that the metabolic 

state of prey bacteria affects their susceptibility to lysis by predatory marine 

flavobacteria.  

 

Introduction 

The biology of predatory microorganisms, particularly with respect to their 

feeding behavior and locomotion, influences their impact on prey communities. For 

example, different protozoan grazers selectively consume prey based on factors including 

cell size [26,143,144,145], attachment to surfaces [28], prey motility [8] and cell-surface 

chemistry [146,147,148]. In addition, biofilm formation has been observed to provide 

protection against some protists but not others [149]. Many of these factors are the direct 

result of the protists’ need to engulf, or phagocytize, prey cells into food vacuoles in 
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order for lysis to occur. Examination of the biological capabilities and limits of protozoan 

grazers has been tremendously informative – revealing that some protozoan grazers, such 

as amoebae and some ciliates, are well-adapted to feeding on established biofilms while 

others, including some flagellates, are better adapted for feeding on suspended cells 

within characteristic size ranges [28,61,62,149,150,151,152,153,154]. These types of 

findings have shown that biofilms do not provide absolute protection against predation. 

In addition, other studies have shown that protozoan grazers can enhance prey 

communities’ rate of metabolic activity and diversity [4,5,16,20,61,146].  

Since predatory bacteria utilize lytic mechanisms other than those of protozoans, 

it is likely that surface-associated predatory bacteria may play ecological and 

biogeochemical roles quite distinct from protozoans. Previous observations of the novel 

marine flavobacteria strains described in Chapter 2 as well as the body of literature 

developed during the last century on predatory bacteria make it clear that known 

predatory bacteria do not utilize phagocytosis to lyse prey cells. In the case of surface-

associated gliding predatory bacteria, such as myxobacteria [34], members of the genera 

Lysobacter [49,70], Herpetosiphon [33] and Saprospira [45] and the novel predatory 

marine flavobacteria described in Chapter 2, prey cells are lysed in the predator cells’ 

extracellular neighborhood by currently undescribed mechanisms.  

In part due to the inherent difficulties in directly observing the cell-to-cell 

interactions between predator and prey bacteria, the lytic mechanism of predatory marine 

flavobacteria is not immediately evident. In membrane-filter coculture experiments, 

described in Chapter 2, dense aggregations of gliding cells were observed to coincide 

with the disappearance of the majority of FISH-probe hybridizing prey cells. Such an 

apparently social growth habit is highly reminiscent of the swarms documented for 

myxobacteria, which have long been observed to form dense swarms and aggregations 

during the elimination of bacterial prey [34,155,156], termed wolf-pack predation. In 

light of this observation, the question of whether predatory marine flavobacteria require a 

substantial quorum of cells sufficient to form a swarm becomes a potentially critical 

constraint on their environmental significance as grazers.  
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If predatory marine flavobacteria are only able to lyse prey cells when they are 

socially cooperating in swarms, their ecological significance is likely to be more limited. 

They might only act as predators when either a critical mass of flavobacteria cells 

simultaneously colonize a susceptible prey community or sufficient nutrients are 

available to allow them to grow to swarm-type densities. The first case would be 

facilitated if predatory marine flavobacteria are able to form aggregates, similar to 

myxobacterial fruiting bodies, containing a large number of cells and capable of being 

dispersed intact. The results of Chapter 2 show that Olleya sp. VCSA23 and VCSM12 

readily aggregate after prey clearance, which might lead to the development of such a 

dispersal structure. On the other hand, Tenacibaculum sp. VCSA14A scattered and 

decreased its cell size after the prey lawn was cleared. In the second case, flavobacterial 

predation might only occur in ecosystems in which the non-predatory competitiveness of 

predatory marine flavobacteria allowed them to reach high cell densities.  

However, both myxobacteria [43] and Saprospira sp. [45] have been reported to 

possess the capability for individual cells to grow predatorily in the absence of social 

coordination. If single cells of predatory marine flavobacteria are able to lyse prey cells 

as well, flavobacterial predation would not be limited to habitats capable of sustaining 

dense blooms of predatory cells.  

Many marine flavobacteria have been found to be important components of 

particle-associated communities in sediments, suspended marine snow and other types of 

particulate matter [126,127,157]. If one or a few cells are capable of predating in the 

absence of a swarm, flavobacterial predation could be ubiquitous within aquatic 

microbial communities. Substrate colonization experiments with natural bacterioplankton 

communities have indicated that at least a portion of marine flavobacteria readily attach 

to particle surfaces from suspension [128,158].  

Another observation from Chapter 2 was the major difference in cell yield 

between the Olleya strains and Tenacibaculum strains during predatory growth. All tested 

Olleya strains produced an order of magnitude more cells from the exploitation of the 

same prey density than the Tenacibaculum strains (Ch. 2). One hypothesis that might 
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explain this disparity would be that the Olleya strains are capable of assimilating a 

broader range of organic compounds from prey biomass than the Tenacibaculum strains. 

This hypothesis is partially supported by previous findings that T. discolor and T. 

gallaicum, two of the closest cultured relatives of Tenacibaculum sp. VCSA14A and 

themselves predatory, do not appear to be capable of growth on carbohydrates [95], while 

O. marilimosa (the closest cultured relative to the predatory Olleya strains) has been 

reported to be capable of growth on a variety of sugars [112]. In order to further explore 

this hypothesis, all three novel predatory marine flavobacteria strains and the three 

already described reference species were assayed for the activity of 19 enzymes involved 

in the utilization of a variety of substrates, including lipids, carbohydrates and proteins.  

An additional biological dimension that could influence the grazing activity of 

predatory marine flavobacteria in the environment is their response to cues in the prey 

community, including prey density, metabolic state and any chemical signals present. In 

at least two reports, bacteria that lyse eukaryotic phytoplankton have been found to limit 

their lytic activity to particular conditions. For three algal-lytic strains isolated from 

cultures of the toxic dinoflagellate Alexandrium catanella, including one identified as a 

Cytophaga sp., lytic compounds were found to be released under high-nutrient conditions 

but not under the low-nutrient conditions in coculture with the dinoflagellate [82]. In 

another case, a strain identified as a Cytophaga sp. was observed to coexist with diatoms 

up to a Cytophaga cell density of about 105 cells/mL, at which point it began to lyse the 

diatoms as its cell density increased to about 107 cells/mL [83].  

In this chapter, a series of experiments were carried out to assess whether high 

inoculum densities are needed for predation by marine flavobacteria to occur. In addition, 

the effect of varying prey condition and culture media on flavobacterial predation was 

tested. Constitutive expression of a range of enzyme functions was assayed to shed light 

on possible explanations for the gap in predatory growth efficiency between the Olleya 

and Tenacibaculum genera.  
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Materials and Methods 

Temperature and salinity optima: The growth and predation for all three novel 

predatory marine flavobacteria – Olleya sp. VCSA23 and VCSM12 and Tenacibaculum 

sp. VCSA14A – was tested at varying temperatures and salinities.  

Non-predatory growth experiments were conducted in 10-mL volumes in capped 

borosilicate glass test tubes (16x100mm) using modified DNb media mixed from sterile 

stock solutions (see appendix). For each of the three strains, a single suspension made 

from colonies grown non-predatorily on agar was used as inoculum for all broths to 

standardize inoculum size. Four temperatures, 15, 21 (room temperature), 30 and 38 °C, 

and three salinities, 20, 25 and 30 ppt, were tested with shaking at 150 rpm. The different 

salinities were tested at 21 °C. Absorbance at 540 nm was monitored by 

spectrophotometer every four to eight hours for two days and cell densities were 

estimated using standard curve equations that had been calibrated with direct cell counts. 

An individual standard curve was generated each for VCSM12 (also used for VCSA23) 

and VCSA14A. Spot checks for purity were conducted by streaking 20 to 40 μL of 

culture onto DN agar plates. Generation times for each test condition were calculated 

using the growth rate constant, calculated from the log-phase of growth in each growth 

curve.  

Predation experiments were conducted on WAT plates with live Shewanella 

oneidensis MR-1 cells (grown up overnight in LB at 30 °C shaken at 150 rpm) that had 

been washed and 10X-concentrated as prey. Plates were made up at five different 

salinities by altering the amount of ASW added to the media: 0, 10, 20, 25 and 30 ppt. 

Prey smears were prepared and inoculated with predator using standard procedures, as 

described in Chapter 2. Plates were incubated at six different temperatures: 4 °C, 15 °C, 

21 °C, 23 °C, 30 °C and 38 °C. Plates of differing salinity were all incubated at 23 °C. 

Extent of clearing and swarm development on all plates was checked and marked every 

two to four days using a dissecting microscope. Plates that did not develop rapid growth 

were monitored for slower development for 24 days before ending the experiment.  
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Enzyme activity: For each strain undergoing enzyme activity testing, three 

cultures were grown up with shaking at 150 rpm at 30 °C over about 36 hours: one in 

Difco marine broth, one in DNb25 (see appendix) and one in DNb25 with pasteurized S. 

oneidensis MR-1 cells added, all at a final volume of 10 mL. Broth cultures were 

inoculated with a loopful of colony from a fresh marine-agar plate culture of the 

appropriate strain. Pasteurized prey cells were prepared by growing up six 10-mL broth 

cultures of S. oneidensis in 1/10 strength LB25 (see appendix) to stationary phase and 

pasteurizing at 70 °C for 30 minutes. The pasteurized suspensions were pelleted by 

centrifugation, resuspended in sterile DNb25 and pooled to a final volume of 7 mL before 

aliquoting into tubes with 9 mL of sterile DNb25.  

The API ZYM system (Biomerieux, Durham, NC) was used to assess activity 

levels of a variety of enzymes of live marine flavobacteria cells according to the 

manufacturer’s instructions. For each broth culture to be tested, the culture was pelleted 

by centrifugation and resuspended to a total volume of 2 mL in ASW+Ca (see appendix) 

instead of the manufacturer’s prescribed medium before addition of 65 μL to each of the 

test strip cupules. Test strips were incubated at 30 °C in the dark for 4.5 hours before 

reading. Sterile negative control cultures for each media condition were incubated in 

parallel with the test cultures and also tested.  

Minimum predatory unit experiments: Two experiments were conducted using 

controlled concentrations of predatory cells to constrain the minimum number of 

predatory cells required to generate lytic clearing of prey cells. In both experiments, 

suspensions of stationary phase S. oneidensis MR-1 cells, grown overnight at 30 °C 

shaken at 150 rpm, washed by centrifugation and resuspension three times in 20 ppt 

ASW-HEPES buffer (see appendix) and concentrated 10 times were used as prey. For 

each experiment, a single batch culture of S. oneidensis was used – resulting in uniform 

prey concentration within each experiment. 100 μL of the washed prey suspension was 

added for each prey spot in all cases. For both experiments, predator suspensions were 

obtained by harvesting VCSA23 and VCSA14A cells from 1-day DNb25 cultures (grown 

at 30 °C with 150 rpm shaking) and washing them three times by centrifugation and 
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resuspension in 20 ppt ASW-HEPES buffer. A standard curve was built for each strain by 

correlating direct counting of washed cell suspensions in a cell counting chamber with 

absorbance measurements at 540 nm in a spectrophotometer and used to estimate cell 

densities in washed suspensions. Washed predator suspensions were diluted as necessary 

to facilitate the delivery of controlled numbers of predator cells by pipetting of 2 to 20 μL 

volumes.  

In the first experiment, prey and predator suspensions were mixed together and 

pipetted directly onto WA25 plates to create spots of about 1.5 to 2 cm in diameter. For 

each of the two predatory strains being tested, seven inoculum concentrations were used: 

105, 104, 5*103, 103, 5*102, 102, 101 total cells per prey spot. An appropriate volume 

(between 2 and 20 μL) of the required dilution of washed predator suspension was mixed 

with the washed prey suspension prior to spotting. Prey only and predator only spots 

were also made as controls. For each plate, all filters received the same treatment. The 

plates were kept right-side up at room temperature until no liquid was visible on the agar 

surface, then they were incubated upside-down at 23 °C in the dark. Spots were 

monitored daily using a dissecting microscope for three days.  

In the second experiment, only a single predator inoculum concentration was used 

– 101 cells per prey spot. In order to visualize the predator-prey dynamics during the 

formation of incipient clearing swarms using confocal microscopy, the second 

experiment was conducted on 0.2-μm black polycarbonate membrane filters (Millipore, 

Billerica, MA). Washed prey and predator suspensions were mixed as needed to ensure 

that each filter would receive on the order of 101 cells of the appropriate predator and the 

number of live prey cells contained in 100 μL of washed prey suspension, and then 

diluted with sterile PBS to a total volume of 1.2 mL for each filter. The diluted 

suspensions were gently filtered onto autoclaved membrane filters using a vacuum pump 

and white polycarbonate membrane filters (0.2 μm pore size) as backing, and then placed 

directly on WA25 plates using flame-sterilized forceps. In between filtrations, the filter 

apparatus was flame-sterilized briefly using ethanol. Four to five filters of a single 

predator treatment were placed on each plate, and 200-μL control suspensions of each 
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treatment were also spotted to allow monitoring of clearing progress by dissecting 

microscope. The filters were sampled at a variety of time points between 0 and 53 hours 

by fixing and freezing filters as described in Chapter 2.  

Fluorescent in-situ hybridization (FISH), confocal microscopy and image analysis 

to measure labeled bio-volumes were carried out using the methods described in Chapter 

2. DAPI images were not collected for this data set as a result of a misalignment of the 

DAPI excitation laser’s optics. To estimate predator cell densities in the images analyzed, 

labeled predator cells were manually counted in as many of the collected images as was 

feasible – a total of 25 images from the VCSA23 treatment containing between 0 and 873 

cells and 11 images from the VCSA14A treatment containing between 0 and 250 cells. 

The resulting cell counts for each of the two predators were correlated using a linear 

regression with the labeled bio-volumes to calculate standard-curve equations, which 

were used to estimate the cell numbers in images in which the cell densities were too high 

to allow direct counting. The edges of swarms, when located, were mapped manually in 

the LSM 510 software and later plotted to estimate the diameter of large clearing zones.  

Predation on different prey conditions: A multifactorial experiment was 

designed and executed to assess the effects of species, metabolic activity, density and 

washing of prey cells on flavobacterial predatory lysis. The generic design for treatments 

involving a single prey species in this experiment is shown in Table 1. Six prey species 

were employed in this experiment: Bacillus subtilis, Escherichia coli, Halomonas 

halodurans, Kocuria kristinae, Pseudomonas corrugata and Shewanella oneidensis. All 

prey strains were handled and grown as described in Chapter 2, with the exception that all 

of the six prey bacteria except for K. kristinae and S. oneidensis were also grown in 

parallel in the defined growth medium BD1 (at 2 g/L sugar substrate; see appendix). K. 

kristinae and S. oneidensis were not grown in BD1 because of a failure to achieve 

sufficient densities and the inability to grow in the defined medium, respectively. As 

shown in Table 1, plating medium was varied as a way to control prey growth. Prey were 

presumed to be starving on the no-nutrient medium WAT, in contrast to BD1 medium (at 

0.01 g/L sugar substrate; see appendix) which was able to support colony formation by 
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most of the prey organisms used in this experiment (data not shown). The BD1 medium 

was incapable of supporting growth of any of the strains of predatory marine 

flavobacteria in this study. When feasible, based on the prey cell density in the source 

culture, both 10- or 20-times concentrated and unconcentrated prey treatments were 

included to assess the importance of prey density to flavobacterial predation. In addition, 

the suspension medium of the prey was varied – with all prey being presented to the 

predators either washed (three times in 20 ppt ASW HEPES buffer) or unwashed (and 

still in the spent media from their growth phase). For all prey organisms except H. 

halodurans, a treatment of pasteurized (at 70 °C for at least 15 minutes) and then washed 

prey was also offered. Two unwashed treatments were used for the prey bacteria capable 

of rapid growth on the BD1 media: one suspended in spent complex media (as 

appropriate to the particular organism: LB for E. coli, S. oneidensis, B. subtilis and P. 

corrugata; M53 for K. kristinae; Marine broth for H. halodurans) and the other 

suspended in the spent BD1 media. All treatments were duplicated.  

For each duplicate, three prey smears of the same suspension and density 

treatment were made using standard procedures on the appropriate plating medium. The 

two outer smears were inoculated with Olleya sp. VCSA23 and Tenacibaculum sp. 

VCSA14A, respectively, taken from two-day-old Marine agar plate cultures and the 

middle smear was left as a prey-only control for comparison. For each combination of 

treatments, two plates with the same prey and media treatments were inoculated. All 

plates were incubated in Zip-loc bags at 23 °C in the dark for three weeks and checked 

using a dissecting microscope on a rolling basis, due to the large number of plates in the 

experiment. The extent of spreading and swarm development was marked on the plate 

lids in permanent marker, and photographs of representative features were taken using a 

Canon Powershot A70 camera on a Zeiss SteREO Discovery.V8 stereomicroscope. For 

each set of photographs, a ruler was photographed at the same magnification in order to 

provide scale. At the end of the experiment, all plate lids were photographed and the 

marked progress of clearing and swarm features was traced manually in Adobe Illustrator 

before measurement of front advance rates in Photoshop.  
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For each treatment/predator pair, the plate lid images were scored for the presence 

of definite and diffuse clearing fronts and radial and fringe swarm fronts. Clearing fronts 

showing clearly defined relief across the boundary and substantial textural differences 

between cleared and uncleared areas were scored as definite. If clearings could be 

observed due to higher transparency of the cleared zones but the front was hard to 

pinpoint because it was indistinct, the front was scored as diffuse. Swarms were scored as 

radial when they expanded away from the prey smears onto open agar, and as fringing 

when they were visible but were tightly confined to the immediate vicinity of the prey 

smear.  

Photographs of clearing and swarm features were processed in Adobe Photoshop 

by converting them to grayscale and using the Auto Tone and Auto Contrast functions to 

adjust the contrast and brightness. In addition, the Smart Sharpen filter (100% amount, 

10-pixel radius, Gaussian blur setting) was used on images for display to improve feature 

clarity.  

 

Results 

Temperature and salinity optima: All three of the tested predatory marine 

flavobacteria strains were found to be mesophilic with regard to their temperature optima 

and capable of growing non-predatorily at a range of salinities, as shown in Table 2. 

None of the strains were capable of growth with sodium chloride alone in the absence of 

sea salts (data not shown). Tenacibaculum sp. VCSA14A was capable of growth at 38 °C 

while the Olleya strains were not. The measured generation times during non-predatory 

growth for the Olleya strains ranged between about 1.5 and 3 generations per hour over a 

range of salinities and temperatures (Table 2). The fastest measured growth rate for an 

Olleya strain was a doubling every 1.47 hours for Olleya sp. VCSM12, at 25 ppt salinity 

and 21 °C. Under the conditions tested for non-predatory growth, the fastest growth rate 

measured for Olleya sp. VCSA23 was a doubling every 2.04 hours at 20 ppt salinity and 

21 °C. In contrast, Tenacibaculum sp. VCSA14A was measured doubling every 1.05 

hours at 38 °C and 25 ppt salinity.  
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Tests of predation across temperature and salinity gradients (Table 3) showed a 

similar pattern, with VCSA14A capable of predation at 38 °C while the highest 

temperature at which Olleya sp. predation was observed was 30 °C. Another difference 

between the Olleya strains and VCSA14A was observed at the low end of the 

temperature and salinity gradients. Although none of the strains showed any predatory 

activity at 0 ppt salinity, both Olleya strains cleared prey cells at 10 ppt salinity while 

VCSA14A showed no activity. Similarly, both Olleya strains were observed to clear prey 

at 4 °C while the lowest temperature at which VCSA14A was observed to clear prey was 

15 °C after 24 days of observation.  

Enzyme activity: All marine flavobacteria strains tested for enzyme activity 

profiles showed strong activity under all growth conditions for alkaline phosphatase, acid 

phosphatase and naphthol-AS-BI-phosphohydrolase, enzymes involved in the cleavage of 

phosphate from organic compounds. In general the six tested strains also had activity of 

most of the enzymes tested involved in lipid, amino acid and protein utilization but rarely 

showed activity of polysaccharide metabolism enzymes (Tables 4 and 5).  

When grown in marine broth prior to testing for enzyme activity, results for T. 

discolor and T. gallaicum were consistent with those previously published (Pineiro-Vidal 

et al. 2008) with the exception of a weak positive N-acetyl-β-glucosaminidase signal for 

T. gallaicum. Although ZYM results for O. marilimosa have not been previously 

reported, results from other API tests have been published (Mancuso Nichols et al. 2005) 

and those that overlap with the ZYM test are shown in Table 4. O. marilimosa failed to 

generate a positive N-acetyl-β-glucosaminidase result using the ZYM test and did 

generate a weak positive α-glucosidase signal, both contrary to previously reported 

results. The discrepancies may be an artifact of the different substrates used in each test. 

There was no major difference in enzyme activity profile between the predatory 

(VCSA23 and VCSM12) and non-predatory (O. marilimosa CAM030) Olleya strains 

(Table 4) grown in marine broth prior to testing. All three of the Olleya strains showed 

activity in all of the tested lipid-, amino acid- and protein-associated enzymes except α-

chymotrypsin, for which no activity was observed, and had no activity for most of the 
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polysaccharide degradation enzymes tested. The only exceptions were α-glucosidase, 

which had weak to strong activity for all three, and α-fucosidase, which showed weak 

activity for VCSA23.  

All of the Tenacibaculum species tested in this study showed strong activity for 

the enzymes involved in lipid, amino acid and protein metabolism and weak or no 

activity for the polysaccharide-involved enzymes (Table 4), similar to previously 

reported results for other members of the Tenacibaculum genus (Pineiro-Vidal et al 2008, 

Jung et al 2006, Choi et al 2006).  

For the most part, all six tested strains showed similar enzyme activity profiles 

when they were grown with and without the addition of pasteurized S. oneidensis MR-1 

cells on a dilute nutrient broth before testing (Table 5). However, there were some 

noteworthy differences. Olleya sp. VCSA23 had higher activity for lipase when grown in 

the presence of pasteurized prey cells than under either of the other two conditions. This 

might be explained by differences in cell load going into the ZYM test resulting from 

additional substrate coming from the pasteurized cells during growth. Interestingly, the 

lipase activity was higher than that observed for cells grown on marine broth, suggesting 

that VCSA23 lipase activity might be induced by the presence of prey cells. Although 

both marine broth and dilute nutrient broth are unlikely to contain significant lipid 

concentrations, a difference in the lipid levels of the two media cannot be completely 

ruled out. However, it seems unlikely given the fact that higher lipase activity on dilute 

nutrient broth than marine broth was only observed for two out of the six strains, Olleya 

sp. VCSA23 and Tenacibaculum sp. VCSA14A.  

Esterase, an enzyme likely involved in the hydrolyis of lipid ester bonds, showed 

higher activity from Olleya sp. VCSM12 under both dilute-nutrient conditions than under 

the richer marine-broth condition. Although their esterase activity in marine broth was 

high, Olleya sp. VCSA23, T. gallaicum and Tenacibaculum sp. VCSA14A showed more 

esterase activity in the presence of pasteurized prey than without it when grown in dilute 

nutrient broth. Similarly, VCSM12 showed activity of several enzymes after growth in 

the presence of pasteurized prey cells roughly equivalent to that observed after growth on 
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marine broth (Table 5). Although this could be a result of additional substrate contained 

in prey cells, it is notable that most of the enzymes tested did not show marked 

differences in activity level between dilute-nutrient and marine broth growth conditions, 

suggesting that the ZYM test was not sensitive to the lower cell yield obtained from the 

dilute-nutrient conditions.  

Interestingly, non-predatory O. marilimosa CAM030 had indistinguishable 

enzyme activity levels under the dilute-nutrient broth treatment regardless of the presence 

of pasteurized S. oneidensis cells, with the exception of the weak α-glucosidase activity 

detected only when pasteurized cells had been added.  

Minimum predatory unit: In the preliminary experiment, in which the initial 

predator cell inoculum was varied between 101 and 105 cells, all of the predator-

inoculated spots with 102 cells or more were promptly cleared within two days, as 

monitored by dissecting microscope. On all 101-cell-loaded spots, between five and 10 

and five and 35 discrete circular clearing plaques appeared within three days for Olleya 

sp. VCSA23 and Tenacibaculum sp. VCSA14A, respectively.  

Since a very low predator inoculum showed the ability to ultimately clear a prey 

spot, the second experiment to examine the dynamics of initial swarm formation from a 

minimal number of predator cells was conducted using 101 cells as the predatory 

inoculum. Control prey and predator spots, spotted directly onto the agar plate to allow 

easy visualization during the experiment, developed circular clearing plaques visible 

under the dissecting microscope in about three days, similar to the results of the 

preliminary experiment.  

Analysis of the three treatments of prey-covered membrane filters (S. oneidensis 

only, Olleya sp. VCSA23 and S. oneidensis and Tenacibaculum sp. VCSA14A and S. 

oneidensis) from early, intermediate and late stages of the experimental incubation 

showed that overall bio-volume of S. oneidensis cells hybridized with the GAM42A 

FISH probe dropped quickly after the initial time point independent of the presence of 

predatory flavobacteria (Figure 1). The largest drop measured was of nearly 90% in the S. 

oneidensis-only treatment between filters sacrificed at 0.6 and 11.3 hours in the 
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experiment, respectively. Therefore it is important to note that the large initial drop in 

labeled prey density visible in Figure 2 is apparently not a result of predation.  

Predator cells were not observed at the initial sampling points, within an hour of 

experiment initiation, for either of the two predator and prey treatments (Figure 2), 

despite extensive exploration of the filters. This is consistent with the initial predator 

inoculation, since the calculated detection threshold for individual cells by random 

sampling of the filter surface with the imaging parameters used is on the order of 103 

cells on the entire filter.  

By 14 hours into the experiment, individual cells and small clusters of cells 

hybridizing to the appropriate predator-specific FISH probes could be readily located on 

the membrane filters (Figure 2). The small clusters consisted of, at maximum, on the 

order of a dozen cells and did not appear to coincide with a visible local decrease in the 

surrounding prey cell density. Predator cell numbers were manually counted in all 

available intermediate-time-point images, and the resulting estimates of cell density on 

the filters are tabulated in Table 6. For both predators, the cell density per square 

millimeter of filter was estimated to be on the order of 102. In the case of Olleya sp. 

VCSA23 (but not Tenacibaculum sp. VCSA14A), the variability amongst the images was 

high and zero is included within a single standard deviation of the mean.  

On filters fixed later in the experiment, incipient swarms were documented. At 34 

hours, an incipient VCSA23 swarm with a diameter of about 40 μm was imaged (data not 

shown). By 53 hours, expanding swarms were located on filters from both predator 

treatments (as mapped in Figure 3). The dimensions and cell densities (estimated using 

standard curves when cell density too high for manual counting) are listed in Table 6 for 

both clearing zones. In short, the approximately 650-μm-diameter VCSA23 swarm was 

smaller than the VCSA14A swarm, which had an estimated diameter of 1600 μm. Both 

swarms could be easily divided into outer and inner cell-density zones. However, 

consistent with the findings of Chapter 2, the distribution of cells between the outer and 

inner zones was diametrically opposite between the two strains. While the two swarms’ 

outer zones had roughly equivalent cell densities, Olleya sp. VCSA23’s inner zone had 
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about three times more cells per square millimeter than its outer zone while 

Tenacibaculum sp. VCSA14A’s inner zone contained about ten times fewer cells per 

square millimeter than its outer zone (Table 6).  

Another observed difference between the two strains of predatory flavobacteria 

after 53 hours of incubation was the predator cell density outside of the swarms, in the 

uncleared prey lawn (Table 6). On the VCSA23-inoculated filter, the estimated cell 

density in the prey lawn after 53 hours was lower than that after 14 hours, although the 

low numbers and patchiness of predator cell density was too high for either estimate’s 

standard deviation to exclude zero. In contrast, the VCSA14A cell density in the prey 

lawn increased nearly an order of magnitude between 14 and 53 hours.  

Predation under differing conditions: Considerable variability was found 

amongst the results of the multifactorial predation experiment on the basis of nearly all of 

the factors tested as well as between duplicate plates of the same treatment. For the six 

prey species tested in the experiment, both Olleya sp. VCSA23 and Tenacibaculum sp. 

VCSA14A showed some ability to clear portions of the smears under at least some of the 

conditions tested for each prey species.  

Intra-treatment variability was surprisingly high, as 32 out of the 66 treatments 

were identified as having substantial discrepancies between the duplicate plates. The 

discrepancies range from differences in the expansion rates of swarms and clearings for 

both predators to one plate showing growth for one or both predators and the other 

showing no or substantially diminished activity for both predators. The treatments with 

discrepancies are widely distributed with no apparent pattern throughout the experiment 

across all prey except B. subtilis and across all other factors, including density, plating 

media and suspension media. However, the discrepancies appear to predominantly affect 

both predators on a plate relative to its duplicate. Great care was taken to avoid the 

switching of plates or plate lids, and in fact the discrepancies were observed directly 

during the experiment. The plating media for the experiment was drawn without tracking 

from multiple batches of plates, which is one possible source of unaccounted-for 

variation.  
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Despite the unanticipated high variability between duplicate plates, some patterns 

were observable in the occurrence of clearing and swarm features on the basis of the 

controlled factors for both strains of predatory flavobacteria. Swarms were scored as 

radial when they expanded away from the prey smears onto open agar, and as fringing 

when they were visible but were tightly confined to the immediate vicinity of the prey 

smear. Overall, fringing swarms remaining close to the edge of the prey smear were 

developed much more frequently by Tenacibaculum sp. VCSA14A than by Olleya sp. 

VCSA23 (Tables 7-12). When such fringing swarms did occur on smears inoculated with 

VCSA23, radial swarms were also observed under the same conditions and sometimes on 

another part of the same smear. VCSA23 fringing swarms were mostly limited to smears 

of H. halodurans and P. corrugata prey that were washed or suspended in spent defined 

growth media and plated onto no-nutrient agar. In contrast, VCSA14A formed fringing 

swarms on smears of all six prey species, often without any radial swarms at all observed 

on either the same smear or the duplicate smear.  

B. subtilis was tested as a prey organism under two plating media and four 

suspension media conditions (Table 7). Both Olleya sp. VCSA23 and Tenacibaculum sp. 

VCSA14A developed at least some clearing on B. subtilis under nearly all of the 

conditions tested. However, VCSA14A only developed diffuse clearings when the prey 

was suspended in spent minimal growth medium BD1 (regardless of plate medium) and 

when it was suspended in spent LB on no-nutrient agar.  

For E. coli as prey, both VCSA23 and VCSA14A produced definite clearings 

under many different test conditions (Table 8). In the case of Olleya sp. VCSA23, 

definite clearings were observed under nearly all treatments except the lowest density one 

– E. coli suspended in spent defined growth medium without concentration and plated on 

no-nutrient agar, where the prey would have no substrate for growth. VCSA14A also 

showed no activity under that condition on either duplicate plate, although it did generate 

definite and/or diffuse clearings on E. coli under a variety of other test conditions. In 

particular, VCSA14A was shown to be capable of clearing E. coli when it was suspended 

in spent LB or washed and pasteurized, regardless of density and plating medium. In 
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addition to forming radial swarms under many of the E. coli test conditions, VCSA14A 

often developed fringing swarms even when no clearing of the E. coli prey was observed 

– specifically when the prey was washed or washed and pasteurized.  

When H. halodurans was tested as prey bacterium, both predators failed to 

develop definite clearings under the standard condition previously used (Table 9) of 

washed live prey on no-nutrient agar. However, Olleya sp. VCSA23 was observed to 

develop subtle, diffuse clearings under that condition suggesting some prey clearing was 

being accomplished. Under most other conditions, Olleya sp. VCSA23 did form definite, 

well-defined clearings on H. halodurans. Tenacibaculum sp. VCSA14A was not 

observed to develop definite clearings under any test condition, except when diffuse 

clearings were observed with H. halodurans suspended in spent Marine broth. Despite 

the lack of observable clearing features, VCSA14A formed swarms under nearly every 

test condition on H. halodurans. Only fringing swarms were developed on no-nutrient 

agar, but robust radial swarms were observed on BD1 agar, which supports H. 

halodurans growth.  

On K. kristinae as prey, Olleya sp. VCSA23 was observed to develop clearings 

under all tested conditions (Table 10). This included in particular the washed prey, no-

nutrient agar condition previously used (Ch. 2) to test for prey specificity, under which 

VCSA23 had been scored as generating ambiguous results. In contrast, no definite 

clearings were observed for Tenacibaculum sp. VCSA14A under any condition although 

diffuse clearings were sporadically observed under a couple of disparate conditions. Both 

predators swarmed under all conditions, though in different forms: all of the VCSA23 

swarms were radial, while most of the VCSA14A swarms were fringing in habit.  

In the case of P. corrugata as prey, plating media appeared to have a profound 

effect on both predators’ activity (Table 11). On no-nutrient agar, Olleya sp. VCSA23 

cleared P. corrugata and swarmed under all conditions. However, on BD1 agar VCSA23 

failed to develop any observable clearing or swarm on either washed or washed and 

pasteurized prey, and was limited to diffuse clearings on P. corrugata suspended in spent 

LB. A similar pattern was observed for Tenacibaculum sp. VCSA14A – which cleared P. 
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corrugata diffusely under most conditions on no-nutrient agar, though not on washed 

prey, consistent with the results of Chapter 2. On BD1 agar, no VCSA14A activity was 

observed on any kind of washed or washed-and-pasteurized prey. The two predators’ 

swarming activity differed somewhat as well. VCSA23 swarms only occurred in the 

presence of clearing features, while VCSA14A swarmed on no-nutrient agar even when 

no clearing features were observed.  

On S. oneidensis prey, both predators developed definite clearings and radial 

swarms under most conditions tested, including the previously used washed prey on no-

nutrient agar condition.  

 

Discussion 

Temperature & salinity: The temperature and salinity tolerances found for 

Tenacibaculum sp. VCSA14A were similar to other described members of the genus, 

none of which have been found to grow at 4 °C. In addition, most described 

Tenacibaculum species are capable of growth at 37 °C [94,95,111,113,139,159]. The 

temperature tolerances for the Olleya strains, VCSA23 and VCSM12, were identical to 

those reported for O. marilimosa CAM030 [112]. In contrast to O. marilimosa, VCSA23 

and VCSM12 required sea salts to grow.  

In general, the conditions of the sediments at the time of sampling fall within the 

measured temperature and salinity ranges. The temperature and salinity throughout the 

sediment column was measured by piezometer immediately before coring. The 

temperature of all sampled depths was relatively uniform at 15 °C, within the observed 

temperature tolerance for all three strains. Salinity varied between greater than 20 ppt 

salinity and 5 ppt from the surface to the bottom of the cored column. Tenacibaculum sp. 

VCSA14A was isolated from sediment taken from the top of the core which was 

submerged at high tide and likely heavily influenced by the bay water. In contrast, the 

Olleya strains were isolated from sediments collected from around three and seven feet 

deep in the core, at which the salinity at the time of coring was 11 ppt and 5 ppt, 

respectively. These salinities were at the lower range tolerated by the Olleya strains and 
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below the minimum salinity required by Tenacibaculum sp. VCSA14A. The salinity 

within the sediments is likely to be variable since the site is a subterranean estuary with a 

deep saltwater/freshwater mixing zone whose position is influenced by seasonal 

groundwater flux.  

Enzyme activity differences: Conclusions from the enzyme activity profiles are 

limited by the specific enzyme activities tested and the coarse resolution of the API ZYM 

system. For example, all of the tested strains probably express additional proteases 

beyond the two specific proteolytic activities assessed, trypsin and α-chymotrypsin, and 

more robust conclusions could be drawn from quantitative per-cell measurements of 

specific enzyme activities.  

With respect to large-scale enzyme differences between the closely related 

predator and non-predatory Olleya species, there was no enzyme activity detected solely 

from either the two predatory strains, Olleya sp. VCSA23 and VCSM12, or the non-

predatory O. marilimosa CAM030 that might be associated with predatory capability. 

The API ZYM results for O. marilimosa CAM030 generally agreed with those previously 

published, with the sole major exception of the failure of the API ZYM test to detect any 

N-acetyl-β-glucosaminidase activity. This discrepancy may be a result of the use of a 

different method to test for the activity [112]. Interestingly, the enzyme activities of the 

two predatory Olleya strains were more variable in response to the presence of 

pasteurized susceptible prey cells in the growth medium than the non-predatory strain. 

However, there was no uniform pattern to this response amongst the two predatory 

strains. The results for strain VCSA23 suggest that esterase and lipase may be more 

highly expressed in the presence of susceptible prey cells. On the other hand, the results 

for VCSM12 suggest that cystine arylamidase, trypsin and α-glucosidase are most likely 

to be more highly expressed in response to prey cells – and esterase and lipase had 

identical activity levels whether prey cells were present or not. Of course, it is possible 

that the changes in activity level were too subtle to be detected by the API ZYM system, 

which is mainly designed as a presence/absence test.  
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All three of the Tenacibaculum strains tested for enzyme activity profiles were 

previously found to be predatory, as described in Chapter 2. The differences in activity 

profiles as a function of growth treatment were even less marked than amongst the Olleya 

strains. Despite this, Tenacibaculum sp. VCSA14A and T. gallaicum did show higher 

esterase activity in association with prey cells than the same media treatment without 

them, similarly to Olleya sp. VCSA23, and T. discolor had a similar lipase activity 

pattern in relation to prey cell presence to that shown by Olleya sp. VCSM12.  

Weak to positive activity of α-glucosidase, which hydrolyzes glucose monomers 

from polysaccharides, was detected for all three Olleya strains and none of the 

Tenacibaculum strains. This suggests that the Olleya strains are at least able to break 

down glucose-containing polysaccharides to a greater extent than Tenacibaculum strains, 

possibly both increasing their access to prey biomass and improving their ability to 

degrade any extracellular biofilm matrix. However, the question of whether the glucose 

released as a result of α-glucosidase activity can be assimilated by Olleya sp. requires 

confirmation by either appropriate growth experiments or an assay testing assimilation.  

The results also indicate that there are genus-level differences between the Olleya 

and Tenacibaculum genera, specifically in the presence of α-chymotrypsin activity in 

Tenacibaculum species and weak α-glucosidase activity in Olleya species. Comparing 

these results to previously published API ZYM data for the genus Lacinutrix, which is 

very closely related to Olleya based on 16S rRNA phylogeny (as described in Chapter 2), 

show that Lacinutrix species possess α-chymotrypsin activity, lack α-glucosidase activity 

and possesss β-galactosidase activity. This suggests that the API ZYM test may be useful 

for genus-level identification of marine flavobacteria.  

Minimum predatory unit: A decrease in hybridized cell density of as much as 

90% was observed as a function of time regardless of the presence or absence of either 

predator (Figure 1), suggesting that at least substantial changes in the number of 

ribosomes per cell took place as a result of some combination of washing, filtration and 

incubation under starvation conditions. Since FISH probes hybridize one-to-one to 16S 

ribosomal RNA, a single copy of which is present in each ribosome, FISH signal strength 
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is proportional to ribosome complement [as reviewed by 160]. The failure of cells to 

hybridize could have been caused by decreases in cell and/or ribosome numbers. S. 

oneidensis cells may have autolysed in response to starvation conditions, in which case 

there could be substantial cellular debris and soluble organic matter available for the 

initial growth stages of the predatory inocula. Another possibility is that a large 

proportion of the S. oneidensis cells might have lowered their ribosome complement 

below the FISH detection threshold in response to starvation conditions. In biofilms 

formed in drinking water, a recent study found that the percent of cells with detectable 

FISH signals could be increased from 50 percent to 80 percent by the addition of fresh 

media [161]. This would also provide an alternative explanation for the increases in 

hybridizing S. oneidensis density observed in close proximity to predatory swarm fronts 

(Ch. 2). Instead of the increase in density being accounted for by cell division, dormant 

cells with low ribosome complements (and therefore effectively invisible to FISH probes) 

may have up-regulated their protein synthesis machinery in response to the availability of 

DOC released by predatory lysis at the swarm front. In addition, a decrease in 

ribosomes/cell in many starving prey cells would be consistent with observations during 

pilot membrane filter experiments. During a pilot experiment using live/dead staining, 

more than 99% of cells in uncleared prey lawns were stained in a manner consistent with 

intact cell membranes (data not shown). 

If the drop in prey cell hybridization within two hours of experiment initiation had 

been the result of autolysis, then ample dead biomass should have been available to 

sustain non-predatory growth. The flavobacteria might have scavenged the cellular debris 

until it was exhausted, and then switched to cooperative swarms in order to predate on 

live, hybridizing S. oneidensis cells. On the other hand, it seems likely that non-

hybridizing S. oneidensis cells were merely dormant and the amount of non-cellular 

organic substrate available for non-predatory growth would have been very small. In that 

case, the flavobacteria may have been predating as individual cells, but needed social 

coordination in order to attack more active prey cells with higher ribosome contents.  
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The coincident imaging of DNA stains with prey-specific FISH probes over a 

similar time-course of prey smears would be necessary to conclusively distinguish 

between the two possible causes of the decrease in prey hybridization. Without the data 

from general DNA stains (unavailable because of maintenance issues on the confocal 

microscope), it is impossible to distinguish between predatory and non-predatory growth 

for the flavobacterial cells during the initial and intermediate stages of the membrane-

filter experiment. In either case, hybridizing S. oneidensis cell density has been observed 

to drop precipitously as swarms of predatory marine flavobacteria pass. If this drop were 

caused by a drop into dormancy by S. oneidensis cells and not their lysis by flavobacteria, 

the massive predatory cell yields would have to be explained by some alternate carbon 

source. To the contrary, no evidence has been observed either in this study or in Chapter 

2 that implies that the marine flavobacterial strains are capable of visible, much less 

substantial, growth on no-nutrient agar in the absence of any prey cell additions.  

The substantial numbers of independent predator cells of both strains observed 

widely distributed in prey lawns at the intermediate stage of the experiment are 

inconsistent with the hypothesis of a dense predatory swarm directly originating from the 

division of a single predator cell at a single location. Under both predator treatments, the 

number of predator cells observed in the imaged area were on the order of hundreds of 

cells per square millimeter. Extrapolated to a total cell-covered area on each membrane 

filter of at least 200 mm2, tens of thousands of predator cells were present on each 

membrane filter within 15 hours of the experiment’s initiation with an initial predator cell 

inoculum of about 10 cells. If each individual cell at this stage had later generated an 

expanding predatory swarm, the discrete circular clearing zones observed on the control 

spots by dissecting microscopes would have been too numerous to visualize before they 

overlapped. Instead, the evidence suggests that at some point between 15 and 50 hours of 

incubation, predatory cells of both strains aggregated into a small number of swarms and 

began predating cooperatively. In this case, the number and spacing of predatory swarms 

forming on the prey lawn is probably controlled by the cells’ response to some condition 

in the prey lawn, and its rough correspondence to the initial number of predatory cells 
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would be coincidental. Factors influencing aggregation into cooperative swarms might 

include predator cell density, prey cell density and the availability of nutrients for non-

predatory growth.  

Olleya sp. VCSA23 and Tenacibaculum sp. VCSA14A were observed to produce 

profoundly different distributions of cell density within their predatory swarms (Table 6, 

Figure 3), consistent with previous observations (Ch. 2). The Olleya strain’s highest cell 

density of about 3 × 105 cells/mm2 was found at the center of a large predatory swarm, 

surrounded by a zone of lower density between the core and edge of the swarm. 

Altogether, the VCSA23 cell density within expanding swarms was three orders of 

magnitude greater than that observed in the uncleared prey lawn areas (Table 6). In 

contrast, Tenacibaculum sp. VCSA14A’s highest cell density of about 2 × 105 cells/mm2 

was observed in the outer zone between the swarm core and edge, while the swarm core’s 

cell density was an order of magnitude less (Table 6). These results further confirm the 

disparity in cell yield from predatory growth between the two strains described in 

Chapter 2.  

In the event that the overall drop in hybridizing S. oneidensis cells on the 

membrane filters is substantially a result of cells entering a dormant, low-ribosome state, 

it is possible that those ‘invisible’ cells were the growth substrate for the independently 

roving predator cells in the intermediate stages of the experiment. If so, the dense 

coordinated swarms may be required to utilize prey cells with higher ribosome contents 

and other potential differences in physiology. The hypothetical predatory lifestyle 

consisting of two such habits, one a low-density scavenging of inactive or dead cells and 

the other a high-density elimination of more active prey cells, suggests the possibility that 

flavobacterial predation may impact the active, growing component of the prey 

community only when the amount of nonliving or inactive substrate can support 

sufficient numbers of predator cells. Experiments utilizing growing prey communities 

with controlled amounts of dead or inactive material for scavenging consumption might 

facilitate testing of this hypothesis.  
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Determining the fate of S. oneidensis cells that stopped hybridizing with the prey-

specific FISH probe is critical to constraining the growth mode of the independent 

predator cells in the early and intermediate stages of the experiment. As mentioned 

above, a general DNA stain would allow detection of cells with an insufficient number of 

ribosomes for hybridization, but still containing DNA. However, this measure on its own 

would provide no additional information on the availability of non-cellular material. If 

possible, the coupling of a DNA stain with FISH probes and fluorescent stains for protein 

and/or extracellular polymeric substances (EPS) in an approach similar to that of the 

membrane-filter experiment would yield an assessment of both the integrity of non-

hybridizing prey cells and the prevalence of extracellular material. An alternative 

approach would be to conduct experiments in flow cells on the microscope stage with 

prey organisms modified to produce fluorescent proteins. An example of this type of 

approach is described by Teal et al. [162], who produced S. oneidensis MR-1 mutant 

strains that each produced two different fluorescent protein labels – one label 

constitutively and the other coupled to a reporter gene for either protein synthesis or 

anaerobic metabolism. Although FISH was not used in the study, the results indicated 

that S. oneidensis MR-1, the same species used in this study, is capable of entering a 

metabolic state in which ribosome and protein synthesis is minimized, but the cells are 

still metabolically active [162].  

Overall, the results of the membrane-filter experiment suggest that cooperative 

swarming is an emergent behavior under particular environmental conditions, and that 

predatory marine flavobacteria are capable of growing in the presence of prey without 

swarming. Consequently, the minimum predatory unit in fact may be a single cell, but the 

path from a single cell to an expanding predatory swarm appears to pass through a 

separate, potentially non-predatory growth habit.  

Predation under differing conditions: The extreme variability between replicate 

plates in the multifactorial experiment in which Olleya sp. VCSA23 and Tenacibaculum 

sp. VCSA14A were incubated on prey under different conditions is of serious concern. 

The observation of plate-level differences between replicates, for which both predators 
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cleared robustly on one replicate plate but either cleared or swarmed less extensively on 

the other, suggests that differences in the plate media was the source of the problem. This 

is a real possibility, since plates from multiple media batches were used in the experiment 

without tracking of their source batches and although great care was taken in labeling and 

sorting the plates, simple mistakes in handling and labeling cannot be completely ruled 

out. It is possible that some of the batches were made with a different brand of agar than 

the others, and this may have seriously compromised the data set. In the case that some of 

the plates were unfavorable for flavobacterial growth, it is also possible that some 

treatments may have received both replicate plates from such a batch and be completely 

compromised. This possibility cannot be excluded, and so all of the results should be 

evaluated critically in the absence of a more rigorous repeat of the experiment with more 

thorough control of media source.  

Another measure that could have improved the power of the results would have 

been quantifying and normalizing the number of prey cells to facilitate comparison 

between prey species treatments. Although the density treatments within a prey species 

treatment are comparable to each other as long as they originated from the same source 

culture, their numerical relationships to the density treatments for other prey species are 

unknown.  

The results of inoculating predatory marine flavobacteria strains onto prey 

incubated under differing growth and suspension conditions showed that the prey 

specificity of both Olleya sp. VCSA23 and Tenacibaculum sp. VCSA14A is wider than 

previously observed. In one case, this was not limited to previously untested incubation 

conditions; specifically, VCSA14A was observed developing clearing features on washed 

B. subtilis prey on no-nutrient agar. This would suggest that, to some degree, the prey 

specificity of VCSA14A may have broadened after its initial isolation. In light of this 

result, the need to minimize serial transfers of predatory microorganisms after isolation 

should be emphasized. A similar broadening of prey specificity has been documented for 

the predatory bacterium Micavibrio admirandus after three years of maintenance by 

serial transfers no less often than every three months [63], resulting in a possible total 
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number of serial transfers likely on the same order as in this study. In addition, prey 

specificity tests in general should be conducted under a variety of conditions with 

replication.  

A general phenomenon that had been incidentally observed but not systematically 

tracked during the work described in Chapter 2 was the frequent development of swarms 

in the absence of any observation of clearing features, particularly for Tenacibaculum sp. 

VCSA14A. Often these swarms were observed to have a fringing habit, in which the 

swarm front only extended beyond the prey smear by a millimeter or two (Figure 4). It is 

possible that this reduced swarming habit is the product of lower substrate availability, 

compared with smears in which either the flavobacterial strain is able to lyse prey cells or 

some exogenous organic substrate is available (such as in the case of unwashed prey 

cells). As a result, the fringing swarm habit may be a sign of either non-predatory growth 

by the marine flavobacteria on organic matter exuded by unsusceptible prey cells or a 

limited ability to lyse potential prey. This further emphasizes the non-obligate nature of 

the novel marine flavobacteria strains’ predatory capability. Of course, it should be noted 

that fringing and radial swarm habits were not mutually exclusive – sometimes occurring 

in different locations on the same smear.  

A broad finding from the multifactorial experiment is that some prey bacteria are 

more susceptible to predation when under starvation conditions than when they are 

actively growing. On the other hand, other prey bacteria are more susceptible to predation 

under growing conditions than under starvation. For example, clearing features were 

almost universally observed from both predatory strains on all preparations of P. 

corrugata prey when smeared on no-nutrient agar (Table 11). In contrast, clearing 

features were only observed on P. corrugata prey smeared on BD1 agar, which supports 

P. corrugata growth, when the prey cells were unwashed. On the other hand, K. kristinae 

prey on BD1 agar, which also supports their growth, only supported definite clearing 

fronts of Olleya sp. VCSA23 when they were pasteurized (Table 10). The same K. 

kristinae cells supported definite VCSA23 clearing fronts under all test conditions when 

plated on no-nutrient agar.  
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It is currently unclear what the basis for these differences in susceptibility might 

be. The possibilities fall into at least two broad categories. They might be based on 

changes in prey cell susceptibility to predation or on changes in the predator cells’ 

regulation of predatory behavior. Bacteria have been found to employ anti-predator 

behaviors against protozoan grazers including the release of toxins and changes in the 

cell’s structure affecting its digestibility [163,164]. In addition, a plastic phenotypic 

resistance to Bdellovibrio bacteriovorus predation has been observed in several γ-

Proteobacteria species after exposure to the predator [54]. The basis for resistance has not 

been elucidated, but resistant cells were observed to be significantly larger than naïve 

cells. The resistance was quickly lost when the cells were grown up in the absence of the 

predator. There is some evidence for a similar phenomenon occurring in myxobacterial 

plate cultures, from which viable prey cells were nearly always recoverable in one study 

[138]. Any of these strategies might be effective against predatory marine flavobacteria 

as well. It is also possible that the predatory strains tested in this study are adapted to 

respond to variables such as prey density, metabolic state or cell-to-cell signals by up- or 

down-regulating their predatory behavior. Such predator-prey interactions likely underlie 

the dynamics of grazing by predatory marine flavobacteria in natural microbial 

communities, and may vary considerably amongst predator-prey pairs. In order to 

ultimately understand the dynamics governing the impacts of predatory marine 

flavobacteria, it may be necessary to map such predator-prey interactions.  
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Figure 1: Bar graph showing the average labeled S. oneidensis biovolume per square 
micrometer in uncleared, prey lawn areas across different treatments and time points in 
the minimum predatory unit membrane filter experiment. The error bars show a single 
standard deviation for each average. Between six and 13 randomly located images were 
used to calculate each average.  
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Figure 2: Representative fields from three time points sampled from the VCSA23 and 
VCSA14A treatments during the minimum predatory unit experiment. From left to right, 
the image sets are from filters sacrificed after 0, 14 and 53 hours, respectively. The 
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locations of the images for the first two time-points were randomly chosen, while the 
third time-point’s images are from the edge (at top) or just outside (at bottom) of growing 
clearing zones. The top rows of images show the GAM42A-hybridized S. oneidensis prey 
cells and the bottom rows of images show the corresponding VCSA23-hybridized Olleya 
sp. VCSA23 cells (top set of images) and VCSA14A-hybridized Tenacibaculum sp. 
VCSA14A cells (bottom set of images). The white scale bars at the lower right corner of 
each image represent 10 μm. The 53-hour images shown for the VCSA14A treatment 
were cropped to exclude the right side of the image, which had a very low signal-to-noise 
ratio.  
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Figure 3: Figure showing the distribution of predator cell density within incipient marine 
flavobacteria swarms for VCSA23, at top, and VCSA14A, at bottom. To the left are xy-
plots showing the spatial relationships between the images shown at right and major 
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features of the incipient swarms. The clearing front, at which prey density drops 
coincident with increasing predator cell numbers is shown by a dashed black line. The 
predator cell density front within the cleared zone, at which there is a transition between 
the predator cell densities observed in the central core of the swarm and those closer to 
the borders, is designated by a dashed grey line. In the case of the incipient VCSA14A 
swarm, insufficient imaging was done to precisely place the density front’s location, as 
indicated by the grey question mark. The images on the right-hand side of the figure 
show the labeled predator cells within the corresponding imaged area in the graphs at left, 
as connected by a black line between the images and imaged areas. The white bar in each 
image shows a scale of 10 μm.  
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Figure 4: Photographs of typical clearing and swarm morphologies observed for Olleya 
sp. VCSA23 and Tenacibaculum sp. VCSA14A. Clearing fronts are labeled by black 
arrows pointing from within the cleared area toward the clearing front and swarm fronts 
are labeled by white arrows pointing from within the swarm toward the swarm front. At 
top, images A and B show the typical appearance of definite (clearly defined) clearing 
fronts within prey smears for VCSA23 and VCSA14A, respectively. Images C and D 
show examples of diffuse clearing fronts in which there is either no clearly defined 
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boundary or no obvious textural difference between cleared and uncleared areas. Images 
E and F show examples of robust, radially expanding swarms that extend far from the 
prey smear onto open agar. At bottom, images G and H show examples of fringing 
swarms which do not extend away from the prey smear more than a minimal distance. 
Images were captured from: low density LB-suspended S. oneidensis on no-nutrient agar 
(A), high density LB-suspended S. oneidensis on no-nutrient agar (B), M53-suspended K. 
kristinae on no-nutrient agar (C), low density Marine-broth-suspended H. halodurans on 
BD1 agar (D), high density BD1-suspended H. halodurans on no-nutrient agar (E), low 
density LB-suspended E. coli on no-nutrient agar (F), high density washed S. oneidensis 
on no-nutrient agar (G) and pasteurized K. kristinae on no-nutrient agar (H).  
 
 
Table 1: Varying conditions experiment treatments  

Plating media Suspension treatment Density treatment 
Unconcentrated 

Spent complex media 
Concentrated 

Unconcentrated 
Spent defined media 

Concentrated 
Unconcentrated 

Washed 
Concentrated 

Unconcentrated 

No-nutrient  
ASW  
agar 

Washed + pasteurized 
Concentrated 

Unconcentrated 
Spent complex media 

Concentrated 
Unconcentrated 

Spent defined media 
Concentrated 

Unconcentrated 
Washed 

Concentrated 
Unconcentrated 

BD1  
defined growth agar  

(25 ppt ASW)  
Supports growth of all but 
one prey (S. oneidensis) 

Washed + pasteurized 
Concentrated 

 
Table 2: Calculated generation times (hours) across temperature and salinity gradients 

Temperature: 15 °C 21 °C 30 °C 38 °C 
Salinity: 25 20 25 30 25 25 

Strain:       
Olleya sp. VCSA23 3.15 2.04 2.24 2.40 2.68 - 
Olleya sp. VCSM12 1.71 3.08 1.47 2.49 2.66 - 
Tenacibaculum sp. VCSA14A 2.63 1.79 1.70 1.60 1.15 1.05 
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Table 3: Predation across temperature and salinity gradients 

  Olleya sp. 
VCSA23 

Olleya sp. 
VCSM12 

Tenacibaculum 
sp. VCSA14A 

 Temperature (°C)    
4 °C + + - 
15 °C + + + 
23 °C + + + 
30 °C + + + 25

 p
pt

 
sa

li
ni

ty
 

38 °C - - + 
 Salinity (ppt)    

0 - - - 
10 + + - 
20 + + + 
25 + + + 23

°C
 

30 + + + 
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Table 4: Enzyme activity results after growth in Marine broth 

 Enzymes 
degrading: 

Lipid 
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protein 
Polysaccharide 

Organic 
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Olleya sp. VCSA23 This study + + w + + + w - - - - w - - - w + + + 
Olleya sp. VCSM12 This study w + + + + + + - - - - + - - - - + + + 
O. marilimosa CAM030 This study + + + + + + w - - - - w - - - - + + + 
O. marilimosa CAM030  nd nd nd + nd nd nd nd - - - - - + nd - + nd nd 
Lacinutrix algicola  + + - + + + + + - + - - - - - - + + + 
L. mariniflava  + + - + + + + + - + - - - - - - + + + 
Tenacibaculum sp. VCSA14A This study + + w + + + + + - - - - - - - - + + + 
T. discolor LL04 11.1.1 This study + + + + + + + + - - - - - - - - + + + 
T. discolor LL04 11.1.1  + + + + + + + + - - - - - - - - + + + 
T. gallaicum A37.1 This study + + + + + + + + - - - - - w - - + + + 
T. gallaicum A37.1  + + + + + + + + - - - - - - - - + + + 
T. litoreum  + + - + + + + + - - - - - - - - + + + 
T. aestuarii  + nd nd + + - nd + - - - - + - - - + + + 
+: unambiguous positive reaction; w: weak positive reaction; -: negative for enzyme activity; nd: not determined in the 
available reference  
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Table 5: Enzyme activity results after different growth conditions 

 Enzymes 
degrading: Lipid 

Amino acids and 
protein 

Polysaccharide 
Organic 

phosphorus 

Strain Growth media G
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Pasteurized S. oneidensis MR-1 w w - w - - - - - - - w - - - - + w w 
Dilute nutrient broth No w + w + + + w - - - - w - - - - + + + 
Dilute nutrient broth Yes + + + + + + w - - - - w - - - - + + + 

Olleya sp.  
VCSA23 

Marine broth No + + w + + + w - - - - w - - - w + + + 
Dilute nutrient broth No + + w + + w w - w w - w - - - - + + + 
Dilute nutrient broth Yes + + w + + + + - - - - + - - - - + + + 

Olleya sp. 
VCSM12 

Marine broth No w + + + + + + - - - - + - - - - + + + 
Dilute nutrient broth No w + w + + w - - - - - - - - - - + + + 
Dilute nutrient broth Yes w + w + + w - - - - - w - - - - + + + 

O. marilimosa 
CAM030 

Marine broth No + + + + + + w - - - - w - - - - + + + 
Dilute nutrient broth No w + + + + + + + - - - - - - - - + + + 
Dilute nutrient broth Yes + + + + + + + + - - - - - - - - + + + 

Tenacibaculum sp. 
VCSA14A 

Marine broth No + + w + + + + + - - - - - - - - + + + 
Dilute nutrient broth No + + w + + + + w - - - - - - - - + + + 
Dilute nutrient broth Yes + + + + + + + w - - - - - - - - + + + 

T. discolor LL04 
11.1.1 

Marine broth No + + + + + + + + - - - - - - - - + + + 
Dilute nutrient broth No w + + + + + + w - - - - - w - - + + + 
Dilute nutrient broth Yes + + w + + + + w - - - - - w - - + + + 

T. gallaicum  
A37.1 

Marine broth No + + + + + + + + - - - - - w - - + + + 



 84

+: unambiguous positive reaction; w: weak positive reaction; -: negative for enzyme activity; nd: not determined in the 
available reference  
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Table 6: Estimated predator cell densities on filters after addition of ~101 predator cells 

Predator: Olleya sp. VCSA23 Tenacibaculum sp. VCSA14A
Time (h): 14 53 14 53 
Cells/mm2 in 
uncleared areas 

(4.99±5.92)  
× 102  

(1.13±1.78)  
× 102 

(2.33±1.67) 
× 102  

(1.21±0.57) 
× 103  

Cells/mm2 in 
outer cleared area 

 
(1.07±0.64)  

× 105  
 1.82 × 105 

Cells/mm2 in 
inner cleared area 

 
(3.45±0.23)  

× 105  
 2.36 × 104 

Cleared area 
diameter (μm) 

 650  1600 

Inner cleared area 
diamater (μm) 

 ~400  500-1200 

Error estimates are a single standard deviation based on the variability in cell numbers 
among images used to calculate the estimate. Error estimates are not available for 
Tenacibaculum sp. VCSA14A’s cleared area cell densities because only one image was 
available to calculate each estimate.  

 
Table 7: Growth features with B. subtilis prey 

  Olleya sp.  
VCSA23 

Tenacibaculum sp. 
VCSA14A 

  Clearing Swarm Clearing Swarm 
  
  
  

Plating media Prey suspension 
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LB-suspended - + + - - + + - 
BD1-suspended* + + + - - + + + 
Washed  + + + - + + + + 

No-nutrient  
agar 

Washed + pasteurized + + + - + + + - 
LB-suspended + - + - + + + - 
BD1-suspended* - + - - - + - + 
Washed  - - + - + + + - 

Defined prey  
growth (BD1)  

agar 
Washed + pasteurized + + + - + + + + 

* -- The BD1-suspended culture was not at the same density as the other prey treatments.  
Definite clearings had sharp, defined edges while diffuse clearings were only 
distinguishable by a textural change. Radial swarms expanded onto open agar away from 
prey smears, while fringe swarms did not. Swarm fronts sometimes switched habits 
during the experiment on a single smear. In some cases, both radial and fringing swarms 
were observed from the same replicate smear; in other cases the two replicates diverged 
from each other with respect to swarm habit. The treatment that had been used to test 
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prey specificity as described in Chapter 2, in which Olleya sp. VCSA23 was observed to 
clear B. subtilis and Tenacibaculum sp. VCSA14A was not, is bolded for reference.  
  
 Table 8: Growth features with E. coli prey 

   Olleya sp.  
VCSA23 

Tenacibaculum sp. 
VCSA14A 

   Clearing Swarm Clearing Swarm 
   
   

Plating 
media 

Prey 
density Prey suspension D
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in

it
e 

D
if

fu
se

 

R
ad

ia
l 

F
ri

ng
e 

D
ef

in
it

e 

D
if

fu
se

 

R
ad

ia
l 

F
ri

ng
e 

LB-suspended + - + - + + + - 
Washed + + + - - - - + 1 
Washed + pasteurized + - + - + - + - 
LB-suspended + - + - + + + - 
Washed + - + - - - - + 10 
Washed + pasteurized + - + - + - + + 

1 BD1-suspended* - - - - - - - - 

No-
nutrient  

agar 

20 BD1-suspended* + + + - - + + - 
LB-suspended + + + - + + + - 
Washed + + + - - + + + 1 
Washed + pasteurized + - + - + + + + 
LB-suspended + - + - + - + - 
Washed + - + - - - - + 10 
Washed + pasteurized + - + - + - + + 

1 BD1-suspended* + - + + + - + - 

Defined 
prey  

growth 
(BD1)  
agar 

20 BD1-suspended* + - + - - + + - 
* -- The BD1-suspended culture was not at the same density as the other prey treatments.  
Definite clearings had sharp, defined edges while diffuse clearings were only 
distinguishable by a textural change. Radial swarms expanded onto open agar away from 
prey smears, while fringe swarms did not. Swarm fronts sometimes switched habits 
during the experiment on a single smear. In some cases, both radial and fringing swarms 
were observed from the same replicate smear; in other cases the two replicates diverged 
from each other with respect to swarm habit. The treatments that had been used to test 
prey specificity as described in Chapter 2, under which Olleya sp. VCSA23 was observed 
to clear E. coli and Tenacibaculum sp. VCSA14A was not, are bolded for reference. 
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Table 9: Growth features with H. halodurans prey 

   Olleya sp.  
VCSA23 

Tenacibaculum sp. 
VCSA14A 

   Clearing Swarm Clearing Swarm 
   
   

Plating 
media 

Prey 
density Prey suspension D
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Marine-broth-
suspended 

+ + + - - + - + 
1 

Washed - + + + - - - + 
Marine-broth-
suspended 

- + + - - + - + 
10 

Washed - + + + - - - + 
1 BD1-suspended* + + + + - - - - 

No-
nutrient  

agar 

20 BD1-suspended* + - + + - - - + 
Marine-broth-
suspended 

+ + + - - + + - 
1 

Washed + + + - - - + + 

10 
Marine-broth-
suspended 

+ + + - - + + - 

1 BD1-suspended* - + + - - - + - 

Defined 
prey  

growth 
(BD1)  
agar 

20 BD1-suspended* - + + - - - + - 
* -- The BD1-suspended culture was not at the same density as the other prey treatments.  
Definite clearings had sharp, defined edges while diffuse clearings were only 
distinguishable by a textural change. Radial swarms expanded onto open agar away from 
prey smears, while fringe swarms did not. Swarm fronts sometimes switched habits 
during the experiment on a single smear. In some cases, both radial and fringing swarms 
were observed from the same replicate smear; in other cases the two replicates diverged 
from each other with respect to swarm habit. The treatments that had been used to test 
prey specificity as described in Chapter 2, under which neither strain was observed to 
clear H. halodurans, are bolded for reference. 
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Table 10: Growth features with K. kristinae prey 

  Olleya sp.  
VCSA23 

Tenacibaculum sp. 
VCSA14A 

  Clearing Swarm Clearing Swarm 
  
  
  

Plating media Prey suspension 
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M53-suspended + - + - - + + + 
Washed  + + + - - - - + 

No-nutrient  
agar 

Washed + pasteurized + - + - - - - + 
M53-suspended - + + - - - - + 
Washed  - + + - - - + + 

Defined prey  
growth (BD1)  

agar Washed + pasteurized + + + - - + + + 
Definite clearings had sharp, defined edges while diffuse clearings were only 
distinguishable by a textural change. Radial swarms expanded onto open agar away from 
prey smears, while fringe swarms did not. Swarm fronts sometimes switched habits 
during the experiment on a single smear. In some cases, both radial and fringing swarms 
were observed from the same replicate smear; in other cases the two replicates diverged 
from each other with respect to swarm habit. The treatment that had been used to test 
prey specificity as described in Chapter 2, under which Olleya sp. VCSA23 was observed 
to develop diffuse clearing features and Tenacibaculum sp. VCSA14A did not grow, are 
bolded for reference. 
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Table 11: Growth features with P. corrugata prey 

   Olleya sp.  
VCSA23 

Tenacibaculum sp. 
VCSA14A 

   Clearing Swarm Clearing Swarm 
   
   

Plating 
media 

Prey 
density Prey suspension D
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LB-suspended + + + - + + + + 
Washed - + + + - - - + 1 
Washed + pasteurized + + + + - + - + 
LB-suspended + + + - - + + + 
Washed + + + + - - + - 10 
Washed + pasteurized + + + - - + - + 

1 BD1-suspended* + + + + + + + + 

No-
nutrient  

agar 

10 BD1-suspended* + - + - - + - + 
LB-suspended - + + - + - + + 
Washed - - - - - - - - 1 
Washed + pasteurized - - - - - - - - 
LB-suspended - + + - - + + - 
Washed - - + - - - + - 10 
Washed + pasteurized - - - - - - - - 

1 BD1-suspended* - + + - - + - - 

Defined 
prey  

growth 
(BD1)  
agar 

10 BD1-suspended* - + - - - - - + 
* -- The BD1-suspended culture was not at the same density as the other prey treatments.  
Definite clearings had sharp, defined edges while diffuse clearings were only 
distinguishable by a textural change. Radial swarms expanded onto open agar away from 
prey smears, while fringe swarms did not. Swarm fronts sometimes switched habits 
during the experiment on a single smear. In some cases, both radial and fringing swarms 
were observed from the same replicate smear; in other cases the two replicates diverged 
from each other with respect to swarm habit. The treatments that had been used to test 
prey specificity as described in Chapter 2, under which Olleya sp. VCSA23 was observed 
to clear P. corrugata and Tenacibaculum sp. VCSA14A was not, are bolded for 
reference. 
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Table 12: Growth features with S. oneidensis prey 

   Olleya sp.  
VCSA23 

Tenacibaculum sp. 
VCSA14A 

   Clearing Swarm Clearing Swarm 
   
   

Plating 
media 

Prey 
density Prey suspension D
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LB-suspended + - + - + + + - 
Washed + - - + + + - - 1 
Washed + pasteurized + - + - - + - + 
LB-suspended + - + - + - + - 
Washed + - + - + - - - 

No-
nutrient  

agar 
10 

Washed + pasteurized + + + - + + - + 
LB-suspended + - + + - + + - 
Washed + - - - - - + - 1 
Washed + pasteurized + + + - + + + + 
LB-suspended + - + - + - + - 

Defined 
prey  

growth 
(BD1)  
agar 10 

Washed + - + - + + + - 
Definite clearings had sharp, defined edges while diffuse clearings were only 
distinguishable by a textural change. Radial swarms expanded onto open agar away from 
prey smears, while fringe swarms did not. Swarm fronts sometimes switched habits 
during the experiment on a single smear. In some cases, both radial and fringing swarms 
were observed from the same replicate smear; in other cases the two replicates diverged 
from each other with respect to swarm habit. The treatments that had been used to test 
prey specificity as described in Chapter 2, under which both predatory strains cleared S. 
oneidensis, are bolded for reference. 
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CHAPTER 4: BIOGEOCHEMICAL EFFECTS OF FLAVOBACTERIAL 

PREDATION 

 

Abstract 

Two experiments were conducted to test the effects of predatory marine 

flavobacteria strains on nutrient release by susceptible prey biofilms. A novel 

methodology using Shewanella oneidensis biofilms grown on microscope slides was 

developed to facilitate the recovery of both fluids for geochemical analysis and biofilms 

for elemental composition and microscopic analysis. The predator strains tested 

represented two phylogenetically distant genera within the marine flavobacteria, Olleya 

and Tenacibaculum, which have previously been observed to differ in prey specificity 

and predatory growth yield. Both predatory strains were found to have statistically 

significant but divergent effects on the release of ammonium from prey biofilms, with 

Olleya sp. VCSA23 stimulating ammonium release and Tenacibaculum sp. VCSA14A 

appearing to suppress it. Analysis of the carbon and nitrogen content of the biofilms 

suggested that C:N ratios may increase in biofilms under flavobacterial predation 

pressure, although sample sizes available from the experimental setup presented detection 

limit problems for the analysis. Microscopy and image analysis on selected biofilms 

suggest the two predatory strains may be adapted to different predatory niches, indicating 

ecological diversity amongst predatory marine flavobacteria.  

 

Introduction 

Knowledge of the factors that structure microbial communities and influence their 

biogeochemical function is of critical importance to understanding a wide variety of 

processes, including the elemental cycles of macronutrients such as nitrogen and carbon, 

ecosystems’ reaction to climate change and the bioremediation of contaminated 

environments. The activity of bacterivorous predators forms an integral part of the 

microbial loop, a cycle in which the regeneration of macronutrients and oxidation of 

organic carbon is accelerated by rapid predation-driven turnover of the heterotrophic 



 92

microbial community [18,25]. Most work on the microbial loop has focused on the role 

of protists and viruses as the main drivers of microbial turnover [4,18,165,166]. 

However, the potential for predatory bacteria to play a role in increasing the efficiency of 

microbe-mediated nutrient cycles has been relatively little explored.  

As the results of the previous two chapters have shown, at least some marine 

flavobacteria possess the ability to grow predatorily at the expense of surface-associated 

living bacterial prey. Marine flavobacteria have often been reported to be important 

components of temperate and polar marine ecosystems [115,120,167,168]. In addition, 

they have been found on particles and detritus in the marine water column [126,127] as 

well as on surfaces in coastal environments, including sediments [118,119], macrophytes 

[94,169] and in close association with animals and sponges [95,109,110,170,171,172]. In 

fact, the closest cultured relatives of the novel strains described in the earlier chapters 

were isolated from some of these aquatic surfaces, specifically Southern Ocean 

particulate matter and diseased fish for Olleya marilimosa CAM030 [112] and 

Tenacibaculum discolor [95], respectively. If even a small proportion of marine 

flavobacteria are predatory, they might heavily influence microbial communities on 

particles and other surfaces, which are thought to be hot spots of microbial activity [173].  

Few studies have focused on the impact of predatory bacteria on prey 

communities, and most were directed at Bdellovibrio-type rapidly swimming predators 

[52,54,137]. Surface-associated gliding predatory bacteria have been less investigated 

with respect to ecological and biogeochemical questions. One reason for the rarity of 

such studies is the artificial nature of the most commonly used culturing environment for 

such bacteria, involving high densities of inactive prey on an agar surface, as described in 

Chapter 2. This culture approach, first used for the isolation of myxobacteria early in the 

20th century [31], allows the easy visualization of predation by expanding predatory 

swarms but poorly mimics natural habitats.  

Many gliding predatory bacteria form dense swarms of cells that move across the 

plate and lyse prey bacteria. These bacteria include myxobacteria [31], members of the 

genera Herpetosiphon [33] and Saprospira [32] and the novel strains described in this 
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thesis (Ch. 2). In myxobacteria, dense swarming during predation and reports of lytic 

ectoenzymes [70,71,84,85,174] and a dependence of casein hydrolysis on high cell 

densities [175] support the ‘wolfpack’ hypothesis: that swarms of predatory cells lyse 

prey by the release of extracellular lytic enzymes [13,50].   

However, the prey smear culture environment does not resemble some likely 

natural habitats of predatory bacteria in many respects. First, the prey are very dense, 

monocultural, and either dead or starving when emplaced on the agar. These 

characteristics result in a prey smear that lacks the architecture and extracellular 

components of a natural biofilm. Second, the predator inoculum is usually a block of agar 

with predatory swarm on its surface or a myxobacterial fruiting body, both of which 

contain a high density of predatory cells. This high dose of predatory inoculum is 

introduced at a single point of the prey smear. The results, highly visible lytic swarms, 

have been the focus of most efforts to elucidate the dyamics of myxobacterial predation 

and behavior [138,176,177,178,179]. However, the dramatic wolfpack growth habit 

could be a result of a tendency for high densities of conspecific predatory bacteria to 

cooperate. A different predatory growth habit may occur in more natural habitats 

containing mixed bacterial communities in biofilms less capable of sustaining such high 

predator densities.  

In fact, other evidence from the study of myxobacteria indicates that alternate 

culture methods can yield insight into other, lower-density predation. In a study using 

microcolonies of prey cells, lysis by Myxococcus xanthus was observed to occur between 

single predator and single prey cells [43]. The observation that myxobacteria do not 

require high cell densities for prey lysis calls into question the necessity of a wolfpack-

style swarm for predation by myxobacteria and similar organisms. This underlines the 

importance of developing more environmentally relevant culture methods for surface-

associated predatory bacteria.  

In addition to the disparity between the normal culture environment for gliding 

predatory bacteria and natural habitats, the smear plate is a highly intractable platform for 

addressing questions pertaining to the biogeochemical effects of bacterial predation. 
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Chemical analyses routinely used to quantitatively track production and consumption of 

metabolic intermediates are conducted on fluid samples, which cannot be easily obtained 

from bacteria on the surface of an agar plate. It is also difficult to quantify cells on an 

agar plate without substantially disturbing their spatial arrangement.  

To overcome these difficulties, an alternative predatory-growth culture 

environment was developed. Pilot experiments (data not shown) established that the 

strains of predatory marine flavobacteria described in Chapter 2 are capable of colonizing 

Shewanella oneidensis biofilms on glass microscope slides from suspension. This culture 

setup has several benefits with regard to addressing questions related to the ecological 

and biogeochemical impact of predatory flavobacteria in natural habitats. The prey are 

present as a mixed community of living and dead cells embedded within a robust biofilm 

architecture, and are only minimally disturbed by handling during culture setup. 

Predatory bacteria are inoculated onto the biofilm via their own capacity for colonization 

of the surface after their addition to the suspension. In addition, both fluid and slide can 

be analyzed quantitatively. In the following experiments, this culture approach was used 

to assess two of the novel predatory marine flavobacteria for their impact on 

macronutrient release and biofilm cell density. The major macronutrients ammonium and 

dissolved organic carbon (DOC) were used to track the regeneration of prey biomass as 

dissolved nutrients in the experimental fluids.  

Nitrogen, of which ammonium is the most accessible form for microbial growth, 

is often a limiting macronutrient in aquatic ecosystems [180,181]. Ammonium is 

particularly useful in this experiment because of the apparent inability to utilize it of the 

marine flavobacteria characterized in this study (Ch. 2). A pilot experiment showed that 

released ammonium is not oxidized to nitrite or nitrate (data not shown). Consequently, 

ammonium in solution should only be reassimilated during regrowth of the S. oneidensis 

prey in response to the release of organic carbon during either autolysis of starving prey 

cells or their lysis by predatory flavobacteria. In addition, ammonium is more amenable 

for measurement than other regenerated inorganic nutrients such as sulfate and phosphate 

due to the relative ease of its analysis and its absence from the experimental buffer (while 
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sulfate is present at substantial concentrations in the ASW used). As a result, ammonium 

is likely to be a macronutrient readily associated with the breakdown of prey biomass.  

Many protozoan grazers have been found to release DOC after predation, which 

helps to drive the microbial loop [18,24,60]. Therefore, the bulk concentration of DOC 

was also monitored to assess whether predatory marine flavobacteria have a similar 

effect.  

Two experiments were carried out, each one testing a predatory flavobacterium 

from one of the two predatory genera – Olleya and Tenacibaculum. Ammonium and 

DOC were analyzed during each experiment’s time course to determine whether 

exposure to the test predatory strain resulted in increased release of either macronutrient 

from the prey biofilms under starvation conditions.  

 

Materials & Methods 

Experimental setup and sampling: S. oneidensis MR-1 was used as the sole 

prey organism in both sets of experiments. It was freshly grown from a 20% glycerol 

freezer stock in advance of each experiment on a Lysogeny Broth (LB) agar plate. Olleya 

sp. VCSA23 and Tenacibaculum sp. VCSA14A, selected as representatives of their 

respective genera, were used as test predators. They were grown from 20% glycerol 

freezer stocks on Marine Broth agar plates in preparation for each experiment.  

The experimental design is summarized in Table 1. Due to the large number of 

tubes needed to facilitate replication in the experiments, each of the two predatory strains 

was tested in a separate experiment. Microscope slides with a width of 25 mm were 

combusted at 460 °C for four hours in preparation for their use as a solid substrate for 

prey biofilm development. Slides with frosted glass surfaces on both sides of one end 

were used for the first experiment with Olleya sp. VCSA23. Slides with a frosted glass 

surface on only one side were used for the second experiment with Tenacibaculum sp. 

VCSA14A.  

For each experiment, 84 combusted slides were placed in 50-mL tubes 

(disposable polypropylene centrifuge tubes, Fisher Brand) filled with 30 mL of sterile 
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LB25 (see appendix). A suspension of S. oneidensis was made by suspending loopfuls of 

fresh culture in 1.5 mL of sterile LB25 and mixing by repeated pipetting. A 30-μL aliquot 

of the S. oneidensis suspension was added to half of the Falcon tubes containing 

combusted slides and sterile media, and the inoculated tubes were incubated at 30 °C and 

150 rpm shaking. The biofilm growth tubes were rotated so that all of the slides had the 

same orientation before being placed in the incubator, to minimize hydrodynamic 

difference between tubes as much as possible. The remaining tubes were incubated at 

room temperature without shaking for four days and checked daily for any contaminating 

growth. Each day at about the same time as the initial inoculation, the majority of the 

medium from the inoculated tubes was gently poured out and replaced with 30 mL of 

sterile LB25. The fresh medium was added carefully along the walls of each tube in an 

effort to minimize disturbance to the developing biofilms.  

After four days of incubation and three medium changes, the slides were removed 

from the biofilm growth tubes and placed in Falcon tubes containing 30 mL of sterile 

ASW25 (made in combusted Pyrex bottles, see appendix). At the same time, the control 

slides that received no S. oneidensis inoculum were also removed from their LB25 tubes 

and placed into 30 mL of sterile ASW25. All slides were incubated in the first wash for 

two hours at 30 °C with 150 rpm of shaking. All 84 slides were then removed from the 

first wash tubes and placed in a fresh set of 50-mL Falcon tubes containing 30 mL of 

sterile ASW25, and incubated at 30 °C with 150 rpm of shaking again, this time for one 

hour. The slides were then moved to a third set of wash tubes, also containing 30 mL of 

sterile ASW25, and incubated at 30 °C and 150 rpm for a further hour for a total of three 

washes over four hours. At the end of the third wash period, every slide was removed 

from its tube and placed in an acid-washed (24 hours in 10% HCl, rinsed 3X with 

deionized water), autoclaved 50-mL tube (brand) filled with 35 mL of sterile ASW25.  

A washed suspension of the test predator was made by suspending a few loopfuls 

of fresh culture in ASW25 and washing at least once by pelleting the cells by 

centrifugation and resuspending in fresh sterile ASW25. The absorbance of the resulting 

suspension was measured at 543 nm in a spectrophotometer relative to sterile ASW25. 
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Standard curves previously calculated using direct cell count figures were used to 

calculate the cell concentration in the washed suspension (~109 cells/mL), and the 

volume of a hundred-fold dilution needed to deliver 105 cells was estimated (5 and 6 μL 

for the VCSA23 and VCSA14A experiments, respectively). Half of the tubes containing 

biofilm slides and half of the tubes containing control slides were inoculated with the 

appropriate predatory flavobacterium. All of the tubes containing slides, whether 

supporting biofilms or not, were then covered with foil to block out all light and 

incubated at room temperature (~21 °C) with shaking at 150 rpm.  

Each experiment was sampled within 12 hours of predator inoculation, and 

afterward at two to four day intervals for about two weeks. For sampling, three tubes 

were randomly selected from each of the four treatments and removed from the shaker. 

The slides were removed from the tubes using flame-sterilized forceps. Two slides from 

each treatment were placed in sterile 50-mL tubes and frozen at -20 °C immediately for 

later direct sampling of biofilms. One slide from each treatment was fixed with 4% 

paraformaldehyde for at least two hours at 4 °C by gently submerging it in the fixative in 

a covered dish. The slides were then washed serially three times by gently submerging in 

phosphate buffer saline (PBS; see appendix) in covered dishes for at least five minutes at 

each wash before being dipped briefly in a 1:1 mixture of PBS and ethanol (PBS:EtOH) 

and frozen at -20 °C in a sterile 50-mL tube. Throughout the fixation and washing, the 

slides were kept with the same side facing up to minimize disturbance to one face of the 

slide, and the direction that face was facing was marked on the 50-mL tube before 

freezing.  

For fluid sampling, a series of subsamples were collected. For direct counts, a 2-

mL subsample was taken from each tube, the cells pelleted by centrifugation, 

resuspended in 4% paraformaldehyde and fixed for at least two hours at 4 °C. After 

fixation, cells were washed in sterile PBS by centrifugation and resuspension and stored 

at -20 °C in PBS:EtOH. A sterile 10-mL syringe was used to withdraw about 6 mL of 

sample from each tube for ammonium and pH analysis, which was then passed through a 

syringe filter with a pore size of 0.2 μm and frozen at -20 °C. The same syringe filter was 



 98

used for the three replicates of each treatment, and washed with the first 0.5 to 1 mL of 

each sample before collecting the remainder of the sample. Each remaining sample was 

filtered through a 0.2-μm pore size Anodisc filter and further split: 10 mL of the filtrate 

was frozen in a combusted EPA vial and the remainder was frozen in a sterile 50-mL 

Falcon tube. All glassware used in filtration was pre-combusted at 460 °C and rinsed with 

deionized water between samples. The Anodisc filters were laid face down on combusted 

GF/F filters, wrapped in combusted foil and frozen at -20 °C. For all time points after the 

first in the VCSA14A experiment, combusted Anodisc filters were used for filtration 

rather than the uncombusted filters used for the preceding samples.  

Fluid chemistry analysis: For ammonium analysis, the 5-6 mL subsamples were 

thawed to room temperature. Ammonium concentrations were measured using the 

phenol/hypochlorite method [182] scaled to a total sample volume of 2 mL. All 

ammonium concentration measurements were made in duplicate. Early time points in 

each experiment were measured without dilution. For each experiment, within three or 

four time points the biofilm-positive treatments ammonium concentrations began to 

exceed the linear range of the ammonium standard curve (5 μM to 50 μM), and thereafter 

all biofilm samples for that experiment were diluted at least 4-8X as necessary.  

For DOC analysis, EPA vials containing 10 mL of frozen sample filtrate were 

thawed and diluted with 20 mL of MilliQ water and then acidified by the addition of 1 μL 

of 12 N HCl per milliliter of total volume. The vials were recapped and placed in the 

autosampler of a TOC-V CSH Total Organic Carbon Analyzer (Shimadzu, Kyoto, 

Japan), which was used to measure the non-purgeable organic carbon with gas flow from 

a Parker Balston TOC Gas Generator. A stock solution of 105 mM potassium hydrogen 

phthalate was used to make daily standard solutions of about 1.5-2.5 mM organic carbon. 

On every day samples were run on the instrument, a fresh standard solution was mixed up 

and run at four dilutions (between 50 and 300 μM organic carbon) to obtain calibration 

points for a standard curve. DOC concentrations were calculated using the standard curve 

run with the samples and corrected by subtracting the average blank (MilliQ water) from 

all sample measurements prior to multiplication to account for sample dilutions.  
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Biofilm analysis: Frozen biofilms were scraped off their slides into sterile 1.5-mL 

microcentrifuge tubes using a clean, flame-sterilized spatula. The spatula was rinsed with 

deionized water, wiped with a Kimwipe and flame-sterilized between each slide. Biofilm 

scrapings were resuspended in sterile ASW25 (500 μL for VCSA23 experiment biofilms, 

400 μL for VCSA14A experiment biofilms), vigorously vortexed and kept frozen at -80 

°C. For CHN analysis, biofilm suspensions were thawed and 100 to 150 μL were pipetted 

at a time into combusted, preweighed tin boats. The aliquots were dried at 60 °C. For 

VCSA14A experiment biofilm suspensions, an additional aliquot of suspension was 

added to the dried samples and again dried at 60 °C. All dried samples were formed into 

pellets and weighed after drying. Dry weights for VCSA23 experiment samples ranged 

between 4.2 and 8.3 mg, the dry weights for VCSA14A experiment samples were 

between 11.6 and 26.1 mg. The samples’ carbon and nitrogen contents were measured by 

dynamic flash combustion on a ThermoQuest EA1112 Carbon/Nitrogen Analyzer. The 

resulting signal was integrated and quantified using a five-point standard curve of 

anelimide (contains both C and N). After the computation of μmoles of carbon and 

nitrogen using the standard curve, carbon-to-nitrogen (C:N) ratios were computed. 

Although the detection limit of the instrument was 0.05 μmole, only C:N ratios for 

samples in which at least 0.25 μmole of nitrogen was detected were retained. Below that 

threshold nitrogen concentrations were highly variable between replicate measurements 

even when the carbon results were very similar (data not shown).  

Fixed biofilms were prepared for hybridization by thawing and drying them at 46 

°C in 50-mL tubes. For each set of hybridizations, fresh 35% formamide hybridization 

buffer was mixed. A hybridization-buffer-saturated Kimwipe was placed in the bottom of 

the hybridization chamber (an empty pipet tip box, allowing the hybridization of a 

maximum of four slides simultaneously) and the chamber equilibrated to 46 °C before 

hybridization. After drying, all four edges of each slide were carefully rubbed against a 

block of paraffin wax to minimize the possibility of buffer spilling off the slide and 

placed on rubber gaskets (made by coring the center out of gray butyl stoppers) in the 

hybridization chamber with the undisturbed side facing up. After replacement of the open 
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hybridization chamber into the oven, 450-500 μL of hybridization buffer was added to 

the top of each slide drop-wise to cover the entire unfrosted area of the upward-facing 

side. Each slide then received 11 μL each of the fluorescein-conjugated GAM42A [105] 

and Cy3-conjugated predator-specific probe stocks (100 ng/μL), and the chamber closed 

and incubated at 46 °C for at least two hours. After two hours, the oven temperature was 

increased to 48 °C and each slide removed to a 50-mL tube containing appropriately 

prepared, prewarmed wash buffer (as described in Ch. 2) and incubated for at least 20 

minutes. The orientation of the hybridized face of the slide was marked on each wash 

tube. Each slide was briefly submerged in water and then dried overnight in the dark 

before the addition of three small drops of DAPI mountant mix [107] and mounted with a 

large coverslip (24 by 60 mm). The slides were kept at 4 °C until imaging. Hybridization 

and wash buffers and probe stock solutions were prepared according to previously 

published protocols [106]. 

Slides were visualized using an Axioplan 2 epifluorescence microscope and a 

Plan-NEOFLUAR 20X objective lens. Images of three fluorescence channels (DAPI, 

fluorescein and Cy3 with exposure times of 0.5, 2 and 1.5 seconds respectively) were 

captured by an Axiocam at the highest possible image resolution of 3900 by 3090 pixels 

using the Axiovision software package (version 4.6). The number of pixels per 

micrometer was determined by imaging a scale slide with 10- and 100-μm markings with 

the same magnification and resolution settings. Each slide was imaged at about 20 

random positions along two length-wise transects – one running near the center of the 

slide and the other within a centimeter of one slide edge or the other. The location on the 

slide was recorded from the position of the stage for most images. Captured images were 

exported from Axiovision as TIF files and analyzed using the daime (v1.2) image 

analysis program [108].  

In daime, the histogram stretch and blur and subtract tools were used to eliminate 

background and increase contrast as much as possible for all images. In each image’s 

case, the effects of the settings were carefully monitored to ensure no significant loss of 

cell signals from the image during preprocessing. The μm-scale was set as appropriate for 
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each image, based on the measured scale. The RATS-L algorithm was used to 

automatically segment each image. In some cases (particularly images with a high cell 

density in one or more channels and those in which parts of the image frame were out of 

focus), the automatic segmentation did not perform well and the image was subsequently 

cropped in Adobe Photoshop into quarters or ninths as necessary for individual 

processing. At lower image sizes, the automatic segmentation was manually inspected 

and adjusted as necessary. The total labeled area of the segmented images was measured, 

tabulated and used to calculate the ratio between predator area and prey area and the total 

cell coverage per square micrometer for each channel at each imaged location.  

Statistical analysis: The ammonium and DOC concentration data sets were 

evaluated for statistical analysis. The DOC data for the VCSA14A experiment was 

excluded as a result of inconsistencies in the DOC concentrations measured in the No-

cell and Predator-only tubes which suggest contamination after sampling. The average 

measurements for each replicate tube in the three remaining data sets were found to be 

approximately normal in their probability distributions, but highly variable in the ranges 

within each treatment. Although analysis of variance (ANOVA) is robust to small 

deviations from a normal probability distribution, it is vulnerable to large differences in 

variance between groups. As a result, the data sets were transformed by taking the square 

root of each measurement to decrease the magnitude of variation in the variances 

between treatments.  

All statistical analyses were completed using the Statistics Toolbox of Matlab 

version 7.5.0.342. The transformed data sets were analyzed using a 2-way ANOVA 

model using treatment (no cells, predator cells only, prey biofilm only, predator cells + 

prey biofilm) and time point (hours between inoculation and sampling) as fixed factors 

and testing for significant effects of combinations of the two factors. The results were 

evaluated at a significance level of 0.05. Multiple comparison tests were conducted using 

Tukey’s Honestly Significant Difference test with alpha equal to 0.05.  
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Results 

Fluid chemistry: The ammonium concentrations of the predator-and-prey 

treatments diverged from those of the corresponding prey-only treatments in the two 

experiments (Figures 1 and 2). In both cases, the ammonium concentrations in the fluid 

of the two biofilm treatments closely mirrored each other for the first 100 and 150 hours 

in the VCSA23 and VCSA14A experiments, respectively. After 100 hours, the ‘VCSA23 

+ prey biofilm’ treatment began to develop ammonium concentrations that grew to 

almost 100 μM greater than those in the ‘Prey biofilm only,’ and by 200 hours into the 

experiment this was reflected in all three replicates sampled (Figure 1). The higher 

ammonium concentrations associated with the combination of VCSA23 cells and S. 

oneidensis biofilm remained stable through the end of the experiment. In contrast, the 

combination of VCSA14A cells and S. oneidensis biofilm appeared to be associated with 

a lower ammonium concentration (Figure 2). After 150 hours into the VCSA14A 

experiment, the ammonium concentration in the ‘VCSA14A + prey biofilm’ treatment 

averaged more than 30 μM lower than that in the ‘Prey biofilm only’ treatment. By the 

end of the experiment, the gap had closed to little more than 10 μM – also in contrast to 

the pattern in the VCSA23 experiment, in which both treatments’ ammonium 

concentrations had leveled off at the end. At all time points in both experiments, the 

ammonium concentrations in the no-biofilm treatments (‘No cells added’ and ‘Predator 

only’) were close to the minimal detection limit.  

Similar to the ammonium concentrations, DOC concentrations were elevated in 

the presence of S. oneidensis biofilms with or without the presence of a predatory 

flavobacteria strain. In the VCSA23 experiment, the DOC levels of the two biofilm 

treatments roughly mirrored each other for the first 200 hours of the experiment before 

the ‘Prey biofilm only’ DOC concentration started to drop relative to the leveled-off 

‘VCSA23 + prey biofilm’ treatment (Figure 3). The DOC concentration in the no-biofilm 

treatments remained low at around 100 μM, showing the background organic carbon 

associated with the experimental apparatus and reagents. DOC concentrations in the 

VCSA14A experiment were more variable between sample time points (Figure 4), 
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possibly as a result of switching to combusted Anodisc filters, which were fragile and 

may have cracked during filtration in some cases. Cracked filters alone, however, does 

not explain high DOC concentrations detected in no-cell control tubes during the 

VCSA14A experiment – suggesting the potential for sample carryover in the filtering 

apparatus between filtrations despite washing. Similarly to the VCSA23 experiment, the 

predator + prey treatment in the VCSA14A experiment developed higher DOC 

concentrations by 250 hours (Figure 4). However, the prey-only treatment had higher 

DOC levels by 300 hours. In general, the baseline control DOC levels for the ‘no biofilm’ 

and ‘VCSA14A only’ treatments were highly variable across time points (Figure 4), 

suggesting problems with carbon contamination at some point during sample handling.   

Biofilm analysis: Biofilms were visibly different between the two experiments. 

In the VCSA23 experiment, slides with prey biofilms had dense accumulations of cells 

just below the air-water interface on both sides of the slides. The color of this thick 

accumulation of biofilm was easily visible to the naked eye, with prey-only slides having 

a pinkish hue characteristic of S. oneidensis and the predator-and-prey slides developing 

a yellow color by the end of the experiment (similar to the yellow-orange color observed 

in Olleya sp. VCSA23 colonies). In contrast, the biofilms at all points in the VCSA14A 

experiment lacked a dense, easily visible accumulation of cells near the air-water 

interface, though thin biofilm was visible over both sides of the slides.  

In many cases, insufficient nitrogen was detected during the CHN analysis to 

support the calculation of a C:N ratio, mostly for VCSA23 experiment samples for which 

a lower amount of the total biofilm suspension was analyzed. A larger sample size was 

used for the VCSA14A samples, with a consequently higher proportion of measurements 

falling above the detection limit of the analysis. C:N ratios during the VCSA14A 

experiment did not vary consistently over time or between treatments (Figure 5). For the 

VCSA23 experiment, later-stage predator + prey slides produced higher C:N ratios than 

earlier stage slides, although the number of measurements from the experiment as a 

whole is low relative to the VCSA14A experiment.  
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Microscopic examination of fixed, dual-hybridized biofilms in the two 

experiments confirmed that both species of predatory flavobacteria were able to colonize 

the prey biofilms during the course of the experiments (Figure 6). Abrupt swarm fronts of 

the type observed previously (Chapter 2) were never observed on either of the two 

predator-and-prey treatments. Instead, prey and predator cells were intermixed. VCSA23 

cells were often tightly associated with each other and with prey cells, while VCSA14A 

cells were nearly always observed scattered singly amongst prey cells.  

Another difference between the two experiments readily visible in Figure 5 is the 

greater average areal extent of predator coverage in the VCSA23 experiment relative to 

the VCSA14A experiment. The predator coverage in both predator-and-prey treatments 

was greater than the relatively constant background level of fluorescence artifacts in the 

Cy3 channel (detected in the no-predator treatments) and the areal extent of predator 

label in the predator-only treatment.  

Examination of the spatial distribution of cell area coverage on each slide 

analyzed in depth (Figures 7-8) shows that cell density is highly heterogeneous across all 

of the experimental biofilms. In addition, it appears that there were major differences 

between the two experiments’ biofilms as a whole, as suggested by the higher prey cell 

coverage on the ‘Prey biofilm only’ slide in the VCSA14A experiment at 251 hours 

relative to its counterpart in the VCSA23 experiment (Figures 7-8). In the VCSA23 

experiment, cell density was highest close to the air-water interface and the center of the 

slide under both predator and no-predator treatments (Figure 7). In contrast, cell coverage 

area was generally higher and more even on the VCSA14A experiment slides (Figure 8) 

than in the VCSA23 experiment, with the higher cell coverage occurring lower on the 

slide relative to the water-air interface.   

Plotting the coverage of predator and prey labels relative to each other shows 

robust linear relationships between them for both predatory flavobacteria (Figure 9). As 

expected, measurements from the ‘Prey biofilm only’ treatments fall exclusively along 

the x-axis, corresponding to a single-member community, and the ‘VCSA23 only’ 

treatment’s measurements plot nearly on the origin. For both test predators in interaction 
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with prey biofilms, the highest density of predator cells was found in locations where the 

highest density of prey cells was observed. However, the predators differed from each 

other with regard to their total density. On the ‘VCSA23 and prey biofilm’ slide from 257 

hours into the VCSA23 experiment, Olleya sp. VCSA23 was at higher density than S. 

oneidensis at a ratio of predator area/μm2 to prey area/μm2 of about 1.7. However, the 

ratio obtained from the 251-hour ‘VCSA14A and prey biofilm’ slide was two orders of 

magnitude smaller at about 0.02. These widely divergent ratios of predator to prey 

suggest very different predator/prey dynamics between the two flavobacteria species 

under the test conditions.  

Statistical analysis: For the three fluid chemistry data sets analyzed statistically, 

both fixed factors, time and treatment, and the combination of the two were found to be 

highly statistically significant (Table 2). In all cases, the null hypothesis that all groups 

share the same mean was rejected at an α of 0.05. Post hoc multiple comparison tests 

were conducted using Tukey’s Honestly Significant Difference test with an α of 0.05 to 

determine which pairwise combinations of time and treatment were significantly different 

from each other. Within each of the three data sets, there were no statistically significant 

differences between the no-cells and predator-only treatments or within any of the control 

treatments as a function of time. For all three data sets, the ammonium and DOC 

concentrations were significantly different as a function of time within each treatment 

that included prey biofilms, and diverged significantly from the no-biofilm control 

treatments. In both ammonium data sets, time points were identified at which statistically 

significant differences existed between the ammonium concentrations of prey-only tubes 

and those of predator-and-prey tubes. In the VCSA23 experiment, the predator-and-prey 

ammonium concentrations were significantly higher than the corresponding prey-only 

concentrations starting at 187 hours and running through the end of the experiment 

(Figure 1). In contrast, the VCSA14A predator-and-prey ammonium concentrations only 

differed significantly from the prey-only tubes at the 251-hour time point, when the 

ammonium concentration was lower in predator-and-prey tubes than in prey-only tubes 

(Figure 2). While the predator-and-prey and prey-only treatments diverged significantly 
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from each other in both ammonium data sets, no statistically significant difference 

between the two biofilm treatments was found at any time point in the VCSA23 DOC 

data set.  

 

Discussion 

The experiments in this study confirmed the ability of both Olleya sp. VCSA23 

and Tenacibaculum sp. VCSA14A to readily colonize prey biofilms from suspension in a 

matter of days. This suggests they can disperse between susceptible surface-associated 

communities in aquatic environments as suspended cells. Marine flavobacteria have been 

shown to colonize suspended particles derived from phytoplankton [128,158,183]. 

Members of the genera Tenacibaculum, Algibacter and Formosa (the latter two more 

closely related to the genus Olleya, see Chapter 2) from Southern Ocean bacterioplankton 

were specifically detected colonizing diatom detritus [128]. In addition, marine 

flavobacteria have frequently been detected on marine snow and other particles collected 

in ocean waters [126,127].  

Since sampling of the experiments involved extensive and immediate sample 

processing, it was not feasible to test both predators in parallel with replication and 

frequent sampling. Consequently each experiment drew from a separately grown batch of 

biofilms, allowing the possibility of systematic differences between the experiments with 

respect to prey density and biofilm architecture. As a result of a supply shortage, a 

change was made between the experiments from slides with frosted surfaces on both 

sides of the label-end to slides with a frosted surface on only one side. This textural 

change had a profound effect on the structure and density of prey cells on the slides, 

probably as a result of changes in the flow regime during biofilm growth. In addition to 

the observations of slide biofilm structures made during sampling, image analysis of the 

prey-only slides sampled at about 250 hours from each experiment revealed a major 

difference in the cell densities of the underlying prey biofilms between the two 

experiments (Figures 7-8). The easily visible biofilm accumulations near the air-water 

interface in the VCSA23 experiment were too dense to be effectively imaged by the 
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techniques used in this study, and so are not included in the image analysis data set. 

Despite this difference, both sets of prey-only biofilms had broadly similar 

biogeochemical characteristics. In the absence of predatory flavobacteria, both released 

100-150 μM ammonium (Figures 1-2) and 150-250 μM organic carbon (above the 

negative control baseline, Figures 3-4) during the course of the experiments.  

Preferential degradation of proteins and other nitrogenous compounds over 

carbohydrates might cause the C:N ratios of biofilm biomass to increase during predation 

by marine flavobacteria. As described in Chapters 2 and 3, available evidence suggests 

the Olleya and Tenacibaculum predatory strains may be unable to degrade a variety of 

polysaccharides. In addition, enzyme activities (Ch. 3) suggest the Olleya strains may be 

able to assimilate at least some sugars that the Tenacibaculum strains cannot utilize. If 

either or both of these hypotheses are correct, then the C:N of biofilm biomass during 

predation could rise at a faster rate than in prey-only biofilms and prove a useful 

measurement to distinguish between predated and unpredated biofilms. Partial biofilm 

suspensions from biofilms of the VCSA23 experiment were often either below the 

detection limit of the CHN analysis or close enough that nitrogen measurements were 

unreliable. Although the data set is patchy and largely without replication, there is a 

general upward trend in C:N for the predator-and-prey biofilms (Figure 5). For samples 

in the VCSA14A experiment, from which a relatively robust set of C:N ratios was 

obtained from both analyzed replicates and treatments from most time points, C:N ratios 

were steady throughout the experiment. The visible trend in C:N data from the VCSA23 

experiment implies that at least some predatory marine flavobacteria may selectively 

partition surplus nutrients between the dissolved and particulate fractions of their 

environment by releasing inorganic nitrogen into solution but leaving partially degraded 

carbohydrates within the biofilm matrix. Taken together, the data suggest that C:N 

analysis can be an informative measurement for biofilm grazing experiments. The 

detection limit difficulties observed during this study could be overcome in future 

experiments by modifying the experimental setup to increase either the density or surface 

area of the biofilms used.  
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With respect to the cycling of ammonium, the no-biofilm controls (no-cells and 

predator-only) in both experiments indicate that the only significant ammonium source 

was prey biomass. Ammonium was not detected in the absence of prey biofilms in either 

experiment (Figures 1-2), ruling out ammonium contamination from the tube itself, the 

glass slides, the ASW medium and the washed predator inocula. Pilot experiments in 

which ammonium and nitrite + nitrate were monitored verified that neither of the 

predatory strains nor the S. oneidensis prey were capable of nitrification, eliminating 

ammonium oxidation as a potential sink for ammonium in the experiments (data not 

shown). Since the predatory marine flavobacteria appear unable to assimilate inorganic 

nitrogen (Ch. 2), the only microorganism in the experiments capable of removing 

ammonium from solution is S. oneidensis. Such reassimilation would require an 

additional carbon substrate, since the ASW does not include any organic carbon above an 

apparently refractory background level. Additional carbon substrate could, however, be 

supplied by prey cell lysis via either autolysis or predatory action.  

Olleya sp. VCSA23 and Tenacibaculum sp. VCSA14A had diametrically opposed 

effects on the ammonium release of the prey biofilms during the two experiments. 

Biofilms inoculated with Olleya sp. VCSA23 released nearly twice as much ammonium 

as prey-only biofilms over the course of the experiment (Figure 1). On the other hand, 

biofilms colonized by Tenacibaculum sp. VCSA14A had not released more ammonium 

than the corresponding prey-only biofilms at any sampled time point. In fact, at one time 

point (about 250 hours, Figure 2) the predator-and-prey biofilms had released on average 

40 μM less ammonium than the prey-only biofilms. For both experiments, ANOVA 

analysis indicated that these disparities between the two treatments’ ammonium 

concentrations were significantly different (Table 2, Figures 1-2).  

In contrast to measured ammonium concentrations, a substantial DOC 

background was detectable in the no-biofilm treatments (no-cells and predator-only) 

throughout the experiments (Figures 3-4). The VCSA23 experiment’s no-biofilm 

treatments were not significantly different from each other at any point in the experiment, 

ruling out the washed predator inoculum as a source of background DOC. Another 
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potential source of background was the leaching of organic compounds from the walls of 

the polypropylene tube. However, such leaching should have been progressive over time 

and there was no change in the DOC concentration of the VCSA23 experiment no-

biofilm controls during the incubation, indicating that any leaching from the tube walls 

was negligible. The two remaining non-biological sources of contaminating DOC are the 

slides and the ASW medium, for which uncombusted salts were used. One or both of 

these sources likely accounts for the background 100 μM organic carbon measured 

during the VCSA23 experiment. There is only one other possible source for the 

additional DOC detected in solution during the experimental incubations: prey biofilms. 

In contrast, the DOC concentrations of the VCSA14A experiment’s negative control 

treatments were highly variable between time points, sometimes reaching concentrations 

of nearly 300 μM organic carbon, calling the integrity of the positive cell treatments’ 

DOC concentrations into question. The main difference in sample handling between the 

two experiments was the switch to precombusted Anodisc 0.2-μm filters as a result of a 

supply shortage. When combusted, Anodisc filters are very fragile and prone to cracking, 

which may have resulted in cells passing through the filter and being retained in the 

filtrate and/or the filtering apparatus (where they may have contaminated later filtrates).  

On the basis of DOC measurements, there did not appear to be differences 

between predator-and-prey and prey-only treatments as pervasive as those observed in 

ammonium concentrations. For most of the VCSA23 experiment, DOC concentrations 

were nearly identical between the two treatments (Figure 3). Near the end of the 

incubation, prey-only DOC concentrations were found to have decreased relative to those 

of the predator-and-prey treatment, which had leveled off. This was presumably a result 

of prey reassimilation of some fraction of organic carbon released from previous 

autolysis. The DOC concentrations of the negative control treatments (no-cells and 

predator-only) in the VCSA23 experiment held steady across all the time points sampled. 

ANOVA analysis indicated that the interaction between predator cells and prey biofilms 

was statistically significant, but the higher p-values suggest it is not as strong an 

influence on DOC release as it is on ammonium release (Table 2).  
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Since DOC concentration is a bulk measurement, it integrates across all organic 

carbon compounds. Both predator and prey are undoubtedly capable of assimilating some 

subset of the released DOC. Therefore the total DOC measurements made during the 

experiment are likely to integrate both accumulation of recalcitrant compounds 

unavailable to either predator or prey and the assimilation from solution of more labile 

compounds that one or both species can utilize. Attempts to identify compositional 

differences in DOC between experiments and treatments require analyses of narrower 

compound classes. Unfortunately, the fluid volumes (~30 mL) and organic carbon 

concentrations (~400 μM carbon) produced by this experiment were too low to support 

such analyses. In order to generate samples amenable to finer-resolution analysis, the 

experimental setup would need to be modified to produce higher organic carbon 

concentrations, by increasing the biofilm cell density and/or surface area and allowing 

longer incubation times to enhance release of DOC from prey biomass via predation.   

The two strains had highly divergent population dynamics in relation to S. 

oneidensis prey cells. After 250 hours of incubation, Olleya sp. VCSA23 numerically 

dominated the biofilm on the predator-and-prey slide at nearly every point imaged and 

VCSA23 cells were often in close association with each other and with prey cells 

(Figures 6-7). After a similar incubation time, Tenacibaculum sp. VCSA14A’s areal 

coverage was less than a tenth that of S. oneidensis in every frame imaged, and 

VCSA14A cells were rarely in close proximity to each other (Figures 6, 8). Interestingly, 

at 250 hours into each experiment the cell densities of both predators had linear 

relationships with prey density which held relatively constant across each slides images 

(Figure 9). Despite the high degree of patchiness in cell density within all biofilms 

analyzed and the lack of replication in the FISH biofilm data set, the highly linear 

relationships between predator and prey populations regardless of total cell density are 

striking at the 250-hour time point (Figure 9).  

Differences in the numerical yield of the two strains and the divergent, highly 

linear relationship each predatory strain possessed with its prey population mirror the 

results of the membrane filter coculture experiments in Chapter 2 showing an order of 
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magnitude difference in predator cell yield between Olleya and Tenacibaculum strains. In 

addition, when tested on prey smears of different species under different conditions (Ch. 

3), Tenacibaculum sp. VCSA14A developed diffuse clearings and swarms in the absence 

of clearing features more commonly than Olleya sp. VCSA23. Of course, this could be an 

artifact of the particular prey species, density and fluid chemistry conditions tested. 

Taken together with the results of this study, it seems possible that strains of the two 

different genera, Olleya and Tenacibaculum, are adapted to different predatory niches. At 

least under the conditions tested, predation by Olleya sp. has similar biogeochemical and 

ecological consequences to those observed for many protozoan grazers, including 

stimulation of macronutrient regeneration [7,21,22,23]. Tenacibaculum sp., however, 

appear to be adapted to a different niche in which recycling of regenerated 

macronutrients within the biofilm is stimulated at the expense of bulk release into 

solution and lower predator populations coexist with high prey populations.  

A conservative predation strategy could be to avoid boom-bust population cycles 

by maintaining a low rate of predation allowing continual regrowth of the prey. This 

strategy would be especially effective if the predator is not well-adapted to survive 

periods of starvation. For example, the spherical cells often found in old Tenacibaculum 

cultures [95,109,110,111], though little studied, have been reported to be incapable of 

generating growth when transferred to fresh medium [109]. Such spherical cells were 

observed in areas of prey lawn cleared by Tenacibaculum predators during membrane 

filter coculture experiments (Ch. 2), and may no longer be viable cells. In contrast, Olleya 

sp. formed dense accumulations of cells that did not appear smaller than those found 

elsewhere in the cocultures (Ch. 2), suggesting that they may have been entering a 

dormant, rather than non-viable, phase.  

It was previously hypothesized (Ch. 2) that the disparity in predator cell yield 

between Olleya and Tenacibaculum strains might be the result of the Olleya strains being 

capable of assimilating a larger fraction of the prey biomass than the Tenacibaculum 

strains. If so, it would help explain the results of these experiments, in which the 

Tenacibaculum strain appeared to suppress inorganic nitrogen release while the Olleya 
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strain stimulated it. Assuming that the prey community is carbon-limited during the 

experiments, the result of lower biomass utilization by Tenacibaculum sp. VCSA14A 

relative to Olleya sp. VCSA23 could be a greater availability of forms of DOC to S. 

oneidensis. Regrowth of S. oneidensis would be coupled to ammonium uptake, possibly 

explaining the lower ammonium concentrations in some predator treatments inoculated 

with Tenacibaculum sp. VCSA14A.  

Another explanation for the disparity between the effects of the two predators is 

differences between the biofilms used in each experiment. It is possible that the more 

evenly distributed biofilms used in the VCSA14A experiment possessed a more extensive 

extracellular matrix that was more difficult for predatory flavobacteria to penetrate. On 

the other hand, it is also possible that Tenacibaculum sp. VCSA14A is inherently less 

capable of penetration into biofilm matrices than Olleya sp. VCSA23. Previous pilot 

experiments conducted with both predators on biofilms grown in parallel suggest this 

may be the case, since Olleya sp. VCSA23 apparently completely obliterated the biofilm 

structure while Tenacibaculum sp. VCSA14A eroded it to a lesser degree (data not 

shown). S. oneidensis was selected as prey for this experiment partially because both of 

the test strains of predatory marine flavobacteria routinely generated robust clearings on 

S. oneidensis smears (Ch. 2). However, those smears lack any native biofilm structure 

that might serve as a defense against predation. Further experimentation with thorough 

characterization and control of biofilm structure would be necessary to distinguish 

amongst these hypotheses. In addition, it would be beneficial to extend experimental 

incubations over a longer period and assess whether either strain would eventually 

completely eliminate the prey biofilm.  

In contrast to the membrane filter coculture experiments (Ch. 2-3), dense 

coordinated swarms were not observed in either experiment’s predator-and-prey slide 

biofilm. In the cleared zones of membrane filter cocultures, the ratios between predator 

and prey volume were also extremely high, ranging from 3 to more than 400, in contrast 

to the relatively low ratios evident in Figure 9. Here, predator cells were distributed more 

evenly within the prey biofilms. This probably results from the more environmentally 
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relevant inoculation mechanism in the slide experiments – in which predatory cells 

colonize the biofilm individually at many points, rather than expanding en masse from a 

single location as in plate experiments with prey smears. The observed predator cell 

distribution within the biofilms would also be consistent with a lytic mechanism 

involving individual cell-to-cell contact, such as that observed for M. xanthus [43] and 

Lysobacter sp. [184], as opposed to a wolfpack mechanism involving the exudation of 

extracellular enzymes. If individual gliding predatory cells are capable of prey lysis, then 

lysis of bacteria by predatory bacteria is probably much more widespread and 

environmentally relevant than if it were limited to areas of high prey density, which 

would seem necessary to sustain the more extensively studied dense predatory swarms. 

Based on the results of this study, at least some predatory marine flavobacteria appear to 

readily colonize surfaces hosting susceptible prey communities and accelerate the 

regeneration of DOC, ammonium and presumably other macronutrients as well.  

There are still substantial differences between the experimental conditions used in 

this study and the natural environments that flavobacteria inhabit. Prey communities in 

aquatic ecosystems can be both phylogenetically and metabolically diverse. Further study 

building on the approach used here could shed considerable light on the potential 

feedbacks between predation and a variety of factors including prey diversity and 

activity, biofilm architecture and predator inoculum size, on prey communities and their 

biogeochemical functions.  

The disparate results for the two strains of predatory marine flavobacteria suggest 

that major differences in predatory biology and biogeochemical impact can exist between 

predators of relatively high phylogenetic similarity. Although the genera Olleya and 

Tenacibaculum cluster well apart in phylogenetic trees of the marine flavobacteria [112], 

most environmental studies of flavobacteria would fail to distinguish between them. 

Many studies have identified the phylum Bacteroidetes in general, and flavobacteria 

more specifically, as numerically important both in suspension and on particles in a 

variety of aquatic ecosystems [122,126,157,168,185]. However, much of that work has 

relied heavily on phylum- or class-specific quantitative-PCR primers and FISH probes 
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[118,167,186,187], which are unable to distinguish between marine and freshwater 

flavobacteria, much less smaller phylogenetic clades. Constraining the potential 

importance of flavobacterial predation in aquatic ecosystems would be greatly facilitated 

not only by further culture studies assessing the predatory capabilities of cultured and 

novel strains but also by the development and routine deployment of culture-independent 

molecular tools possessing at least genus-level phylogenetic resolution.  
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Table 1: Experimental design.  
Time points: 1 2 3 4 5 6

Treatments: 
Prey 

biofilm? 

Predator 

cells? 

# of replicate tubes 

sampled: 

Control - - 3 3 3 3 3 3

Prey only + - 3 3 3 3 3 3

Predator only - + 3 3 3 3 3 3

Predator + prey + + 3 3 3 3 3 3

  

Table 2: Results of 2-way ANOVA of fluid chemistry data 

Predator, 
Nutrient 

Factor Degrees of freedom Mean Squares F-statistic p 

Time 6 26.247 35.23 0 
Treatment 3 366.817 492.43 0 

Time * Treatment 18 15.898 21.34 0 
Error 52 0.745   

     
Time 5 17.776 66.93 0 

Treatment 3 186.69 702.96 0 
Time * Treatment 15 8.372 31.52 0 
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Time 6 21.516 10.72 0 
Treatment 3 255.722 127.45 0 

Time * Treatment 18 9.848 4.91 0 
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Figure 1: Graph plotting the average ammonium concentration for each experimental 
treatment during the VCSA23 experiment. Most points represent the average [NH4

+] of 
three replicate tubes sacrificed at each time point from that treatment. At the last two time 
points (257 and 333 hours) two replicate VCSA23-only tubes are averaged and at the 
final 333-hour time point only one replicate of the No cells added treatment was 
measured for [NH4

+]. The error bars show the standard deviation for the average. Points 
marked with asterisks were significantly different from their corresponding prey-only 
time points based on statistical analysis.  
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Figure 2: Graph plotting the average ammonium concentration for each experimental 
treatment during the VCSA14A experiment. Each point represents the average [NH4

+] of 
three replicate tubes sacrificed at each time point from that treatment, except for the No 
cells added treatment at the 251-hour time point, at which only two replicates were 
measured for [NH4

+]. The error bars show the standard deviation for the average. The 
point marked with an asterisk was found to be significantly different from the 
corresponding prey-only time point based on statistical analysis.  
 
 

 * 
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Figure 3: Graph showing dissolved organic carbon (DOC) in μM carbon during the 
course of the VCSA23 experiment. Each point represents the average of three replicates 
of that treatment sampled at each time point except for the 333-hour time point, at which 
two replicates were measured from the No cells added treatment. The error bars show the 
standard deviation of the three replicates.  
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Figure 4: Graph showing DOC (in μM carbon) during the course of the VCSA14A 
experiment. Each point represents the average of the replicates of that treatment sampled 
at each time point. The error bars show the standard deviation of the replicates: three each 
for both ‘Prey biofilm only’ and ‘VCSA14A + prey biofilm,’ two for ‘No cells added’ 
and one for ‘VCSA14A only.’ 
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Figure 5: Graph of C:N for scraped biofilms from both experiments. White bars are for 
prey only slides – averaged by treatment when C:N ratios from both replicates scraped 
were available. The sole exception is the 82.5-hour bar from the VCSA23 experiment, in 
which case the bar represents an average between two replicate measurements from the 
same slide’s scrapings. Grey bars are for predator + prey slides and, when possible also 
represent averages of two replicate slides sampled at the same time point from the same 
experiment. The error bars show a single standard deviation around the mean. Bars 
without error bars are from a single replicate slide.  
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Figure 6: Set of representative fluorescence micrographs of fixed, dual-hybridized slides 
sampled from both experiments at about 250 hours. Each row of images contains the 



 122

different fluorescence channels for a particular image location on the labeled treatment’s 
slide, randomly selected from image data set. For each row of images, the left-most is the 
Cy3 channel showing the predator-specific FISH probe label. The middle image is the 
fluorescein channel showing the prey-specific GAM42A FISH probe label, and the right-
most image is the DAPI channel showing the total cells. All images have been processed 
in daime to increase contrast for display, and are at the same scale. The scale bar at the 
lower left of the figure is 50 μm.   
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Figure 7 (preceding page): Maps of the VCSA23 + prey and corresponding Prey only 
biofilm slides sampled at 257 hours in the VCSA23 experiment, showing the spatial 
variability in predator and prey cell coverage area. For all three maps, the x- and y-
coordinates show the location of each image analyzed relative to the air/water interface 
(at left) and slides edges (top and bottom of each slide map). The cell area per square 
micrometer is represented by the diameter of the plotted circles and shown in the 
corresponding data labels. The top and middle maps show the predator and prey area 
coverage per square micrometer, respectively, for the VCSA23 + prey biofilm slide and 
the bottom map shows the prey area coverage per square micrometer for the Prey only 
biofilm slide.  
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Figure 8 (preceding page): Map of the VCSA14A + prey and corresponding Prey only 
biofilm slides sampled at 251 hours in the VCSA14A experiment, showing the spatial 
variability in predator and prey cell coverage area. For all three maps, the x- and y-
coordinates show the location of each image analyzed relative to the air/water interface 
(at left) and slides edges (top and bottom of each slide map). The cell area per square 
micrometer is represented by the diameter of the plotted circles and shown in the 
corresponding data labels. The top and middle maps show the predator and prey area 
coverage per square micrometer, respectively, for the VCSA14A + prey biofilm slide and 
the bottom map shows the prey area coverage per square micrometer for the Prey only 
biofilm slide. 
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Figure 9: FISH-labeled predator cell area per square micrometer against FISH-labeled 
prey cell area per square micrometer. All points for a given treatment were calculated 
from a single replicate slide from that treatment fixed for microscopy and later dual-
hybridized. Each point was calculated from a single analyzed image. A value of 1.0 
corresponds to complete cell coverage of the image – i.e., no gaps between cells at all – 
and a value of 0.0 corresponds to no labeled cells detected. All slides from which the 
images plotted in this diagram were drawn were sampled at about 250 hours in each 
experiment.  
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CHAPTER 5: IMPLICATIONS OF BACTERIOLYTIC PREDATION AS A 

LIFESTYLE OF MARINE FLAVOBACTERIA 

 

Abstract 

Marine flavobacteria are ecologically and metabolically diverse and ubiquitous in 

marine environments. By necessity, many environmental studies of predatory 

flavobacteria enumerate the total flavobacterial population. However, the ecological 

niches known to be occupied by members of the marine flavobacteria include the 

degradation of complex organic matter both on surfaces and in suspension, 

photoheterotrophy, carbon-monoxide oxidation, animal pathogenesis, the lysis and 

degradation of phytoplankton and, now, the predatory lysis of bacteria on surfaces. The 

evidence for each of these ecological niches is distributed heterogeneously across the 

marine flavobacterial phylogeny. This heterogeneous distribution of specialized 

adaptations suggests that bacterial predation, at least, may have independently evolved 

multiple times within the marine flavobacteria lineage.  

 

Introduction 

The marine flavobacteria, as they are referred to in this study, are composed of a 

collection of genera in the family Flavobacteriaceae of the phylum Bacteroidetes known 

to occur in marine environments, as opposed to the freshwater flavobacteria, which do 

not cluster amongst the marine genera in phylogenetic analyses [188]. As a group, the 

marine flavobacteria are ubiquitous in marine environments. Pure cultures have been 

isolated from habitats including sea water [111,189], suspended particles [112], pack ice 

[190,191,192], sediments [113], fish and other animals [94,95,110,193,194], and plant 

surfaces [94,195,196]. Culture-independent methods, including metagenomic and 16S 

rRNA gene surveys and fluorescent in-situ hybridization (FISH), have detected 

substantial diversities of marine flavobacteria and confirmed their numerical significance 

in many of these environments [118,119,120,122,126,167,169,172,197,198,199].  
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Although a large number of the culture-independently detected marine 

flavobacteria are closely related to cultured representatives, phylogenetic analysis of 

environmental sequences often reveals whole branches without cultured representatives 

[197,200]. In addition, despite the fact that marine flavobacteria have been cultured from 

and detected in a wide variety of aquatic environments, their numerical importance in 

most cases remains incompletely constrained as a result of incomplete or overly broad 

specificity of the most commonly used molecular tools for their detection. For example, 

the FISH probe most commonly used to enumerate flavobacterial cells in the 

environment, CF319, was designed to target a broader set of taxa than just the marine 

flavobacteria [201], and does not hybridize to some marine flavobacterial groups [202]. 

On the other hand, an apparent bias against marine flavobacteria in clone libraries 

constructed using general bacterial primers has also been observed [122,203]. Taken 

together, these two methodological shortcomings suggest that current data on the 

abundance and diversity of marine flavobacteria may be underestimates.  

 

Ecology of marine flavobacteria 

Degradation of polymeric substances: Both cultured isolates and incubation 

experiments suggest that at least some marine flavobacteria are important in the 

assimilation and degradation of complex organic matter. Most cultured marine 

flavobacteria have been reported to possess the ability to hydrolyze at least some forms of 

polymeric organic compounds [188], including proteins such as gelatin or casein and 

polysaccharide such as starch, chitin or cellulose. In addition, both published genome 

sequences of marine flavobacteria harbor genes for substantial numbers of hydrolytic 

enzymes, suggesting the ability to utilize polymeric substrates [130,131].  

Incubation experiments with various substrate amendments have shown that the 

Cytophaga-Flavobacteria cluster as a group responds rapidly to organic carbon 

enrichment. For example, large increases in the abundance of several phylotypes of 

marine flavobacteria were observed after the amendment of natural bacterioplankton with 

protein, though no effect was observed after starch amendment [125]. The use of 
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radioactively labeled organic substrates makes it possible to visualize individual cells that 

have assimilated the label via microautoradiography [204]. The application of this 

technique to coastal bacterioplankton showed that the Cytophaga-Flavobacteria cluster 

(as identified by FISH) was responsible for a disproportionately large amount of 

polymeric substrate assimilation relative to its abundance [205]. Chitin, N-

acetylglucosamine (a chemical component of bacterial cell walls) and protein were all 

assimilated disproportionately by the Cytophaga-Flavobacteria cluster, while free amino 

acids were assimilated to a lesser degree than by other bacterial groups.  

In addition, a frequently observed association of marine flavobacteria with 

phytoplankton blooms suggests they are involved in the degradation of phytoplankton-

derived organic matter. Both mesocosm and field studies have shown that marine 

flavobacteria increase in relative abundance during phytoplankton blooms [157,183,206]. 

A quantitative survey of attached flavobacteria in the Southern Ocean also revealed a 

positive correlation between attached flavobacteria abundance and chlorophyll a 

concentrations [185].  

Particle- and surface-assocations: In addition to their numerical importance in 

the bacterioplankton, investigations of particle-associated communities have shown that 

marine flavobacteria can be enriched on particles relative to the suspended cell fraction 

[126,207,208]. Many cultured marine flavobacteria isolates have also been isolated from 

particles [112], the surfaces of plants and animals [109,194,195,196] and sediments 

[113,209,210], including the strains described in this thesis.  

A colonization study using diatom detritus exposed to natural bacterioplankton 

communities, filtered to remove particles, showed that a wide diversity of marine 

flavobacteria can rapidly colonize particles [128]. Interestingly, most of the phylotypes 

observed to colonize the particles were detectable in the original bacterioplankton 

communities, suggesting that a substantial proportion of the suspended flavobacterial 

community in the Southern Ocean can grow both in and out of association with particles.  

Photoheterophy and lithotrophy: Metagenomic and PCR surveys of sea water 

and full genome sequencing of Polaribacter dokdonensis MED152 have detected genes 
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from marine flavobacteria coding for the production of proteorhodopsin [131,211,212], 

thought to be a light-driven transmembrane pump [213]. A sea water incubation 

experiment and culture experiments using Dokdonia sp. MED134 and other strains have 

shown that at least some proteorhodopsin-containing marine flavobacteria grow to higher 

densities when exposed to light than when kept in the dark [214,215]. This strongly 

suggests that at least some marine flavobacteria have the ability to harvest light energy to 

increase their growth efficiency, a metabolic capability that could be extremely 

advantageous in oligotrophic marine settings.  

In addition, some marine flavobacteria may have the ability to oxidize carbon 

monoxide. The sequencing of the whole genome of Gramella forsetii revealed the 

presence of two operons encoding aerobic carbon monoxide hydrogenases [130], which 

raises the possibility that marine flavobacteria may play a role in the cycling of carbon 

monoxide as well. No carbon monoxide hydrogenases were reported from the genome of 

Polaribacter sp. MED152 [131].   

Pathogenesis: Five species belonging to the genus Tenacibaculum were isolated 

from diseased fish and have been confirmed as pathogens: T. maritimum, originally 

isolated from diseased bream [109] and now known to infect a wide variety of marine 

fishes [216]; T. ovolyticum, shown to infect halibut eggs and larvae [110]; T. soleae, a 

pathogen of sole [193]; and T. discolor and T. gallaicum, pathogens of sole and turbot, 

respectively [95]. T. maritimum and the other pathogens of adult fish infect the outer skin 

of susceptible fish, causing lesions and erosion of mouth, fins and tail by breaking down 

the host tissue [216]. Another species, T. aiptasiae was isolated from a diseased sea 

anemone, although its pathogenicity was not confirmed [217]. In addition to these 

pathogenic Tenacibaculum species, several of the other described members of the genus 

were cultured from close association with animals or macrophytes. T. adriaticum, T. 

crassostreae, T. litopenaei, T. mesophilum and T. amylolyticum were isolated from a 

bryozoan, an oyster, a shrimp mariculture pond, a sponge and a macroalga, respectively 

[94].  
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Algal-lysis: Diverse marine flavobacteria strains have been reported to lyse 

eukaryotic phytoplankton, principally in studies focused on the control of species 

responsible for red tides [82,83,141,142]. Such a lifestyle could easily be termed 

predatory, assuming that growth of the algal-lytic flavobacteria is coupled to algal lysis. 

Unfortunately the potential for growth of algal-lytic bacteria at the expense of susceptible 

phytoplankton is often left unexplored in such studies. In at least one exception to this 

trend, an algal-lytic marine flavobacterium Cytophaga sp. A5Y, isolated from a bloom of 

the red-tide-causing diatom Skeletonema costatum, was reported to increase in numbers 

as it lysed susceptible phytoplankton [83]. Interestingly, algal lysis did not occur until the 

flavobacteria had reached a density of 106 cells/mL, suggesting that up to that point the 

lytic cells were growing non-predatorily on algal exudates. In addition, direct cell-to-cell 

contact was observed to be associated with algal lysis for this strain [83].  

In another case, an algal-lytic marine flavobacterium only released algal-lytic 

compounds when grown under high-nutrient conditions in the absence of the toxic 

dinoflagellate Alexandrium catenella it was originally isolated from [82]. When returned 

to oligotrophic conditions in coculture with the dinoflagellate, the strain did not produce 

algal-lytic compounds and instead grew symbiotically.  

Only one algal-lytic marine flavobacterium has been formally described to date, 

the non-motile Kordia algicida, which was isolated from a bloom of the red-tide-causing 

diatom Skeletonema costatum and showed lytic activity towards another diatom, a 

dinoflagellate and a chromalveolate [141]. However, little has been reported to date with 

regard to K. algicida’s lytic mechanism or growth in the presence of susceptible algae. 

Other algal-lytic strains reported but not extensively described belong to the genera 

Aquimarina, Flavobacterium and Tenacibaculum [142].  

Bacteriolytic predation: In this thesis, two separate lineages within the marine 

flavobacteria have been shown to include members capable of growing predatorily on 

other bacteria isolated from coastal sediments (Ch. 2). One of the two lineages, the genus 

Tenacibaculum, also includes fish pathogens and incompletely described algal-lytic 

strains. In fact, two pathogenic Tenacibaculum species, T. discolor and T. gallaicum, 
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were found to possess bacteriolytic predatory capability as well. In addition, the 

widespread fish pathogen T. maritimum was reported to lyse dead bacterial cells in its 

original description [109]. Taken together, these observations suggest that more species 

in the genus Tenacibaculum likely possess bacteriolytic capabilities. Bacteriolysis may 

represent a refuge for pathogenic Tenacibaculum in between the colonization of 

susceptible animal hosts, which could explain sudden infections of fish populations by 

Tenacibaculum without a known pathogen source [216].  

In contrast to the generally sediment- and animal-associated nature of cultured 

Tenacibaculum species, the other lineage including novel predatory members is the genus 

Olleya, the type species of which was isolated from suspended particles in the Southern 

Ocean [112]. O. marilimosa, the type species for the genus, showed no predatory 

capabilities while the closely related novel strains, Olleya sp. VCSA23 and VCSM12, 

were capable of predation on a broad array of prey microorganisms. The potential 

predatory capability of a newly described species in the genus, O. aquimarina [218], 

which was isolated from sea water, is currently unknown. 

Taken together with existing knowledge of the ecological potential of marine 

flavobacteria as a group, the predatory lifestyle has clear connections to algal lysis and 

pathogenesis. Arguably, the main difference between these ecological phenomena lies in 

the target of lytic action. In all three cases, a marine flavobacterium has become adapted 

to destroy cells of other organisms, presumably to gain access to the wealth of polymeric 

organic substances and other substrates contained within living biomass. Regardless of 

the target, cell lysis requires the recognition and colonization of a surface populated by 

susceptible cells, some chemical mechanism for compromising the integrity of prey (or 

host) cells and the hydrolytic and assimilatory capability to utilize some portion of the 

resulting organic matter.  

  

Constraining the predatory lifestyle 

The predatory marine flavobacteria described in this thesis share a number of 

characteristics, which may be helpful in considering how widespread a bacteriolytic 
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predatory lifestyle might be amongst marine flavobacteria. Of course, it should be noted 

that these characteristics are certainly not diagnostic of predatory flavobacteria, since the 

one non-predatory species studied in this thesis, O. marilimosa, shares them as well. 

They include gliding motility and an organic nitrogen requirement (Ch. 2).  

Gliding motility would seem to be a prerequisite for the type of surface-

associated, coordinated predatory growth habit observed for all five predatory strains in 

this thesis. In fact, a survey of the descriptive literature of marine flavobacteria reveals 

that gliding motility is highly heterogeneously distributed across the genera. For many 

genera, all or most of their described species have been reported to possess gliding 

motility, including Olleya, Formosa, Mesoflavibacter, Algibacter, Winogradskyella, 

Tenacibaculum, Gelidibacter, Cellulophaga, and Aquimarina. However, they do not form 

a monophyletic group to the exclusion of the genera for which all or most of the 

described species have not been observed to exhibit gliding motility, including 

Lacinutrix, Bizionia, Polaribacter, Kordia, Psychroserpens, Lutibacter and Gillisia. This 

lack of phylogenetic separation between genera possessing gliding motility and those 

lacking it suggests that the characteristic has either been frequently lost, frequently 

gained or both. Given that a physiological capability as sophisticated as gliding motility 

is the result of 15 interacting genes [131] and assuming that its lack is due to a loss of at 

least some of the genetic machinery in question, it seems unlikely to have either been 

laterally transferred or independently evolved many times. Instead, the distribution of 

gliding motility suggests that when marine flavobacteria enter an ecological niche in 

which motility is unnecessary, they lose the capability.  

Interestingly, the algicidal species K. algicida is amongst the marine flavobacteria 

previously reported to lack gliding motility. This suggests that if K. algicida is predatory, 

it must carry out a predatory lifestyle that does not require surface motility. Possibilities 

might include either releasing lytic factors into solution or adhering to prey organisms 

upon chance contacts. The opposing alternative, of course, is that K. algicida and other 

marine flavobacteria possess algicidal capabilities for non-nutritional reasons. Potentially, 
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algicidal factors could be expressed in a way analogous to more commonly known 

antibiotics.  

In addition to the fact that alternative predatory mechanisms may exist in the 

absence of gliding motility, another complicating factor to attempting to use gliding 

motility as a potential constraint on predatory capability has emerged from full genome 

analyses. P. dokdonensis is amongst the species described as lacking gliding motility, as 

is the case for all described species in the genus Polaribacter, which clusters consistently 

and monophyletically with the genus Tenacibaculum [219]. Somewhat surprisingly, the 

sequencing of the full genome of P. dokdonensis MED152, a different strain than the 

fully described type strain for that species, revealed a full set of gliding motility genes 

[131]. Another marine flavobacterium whose full genome has been sequenced, G. 

forsetii, possesses all but one of the genes associated with gliding motility, suggesting 

that it may have lost gliding motility in recent evolutionary history [130]. However, 

genes for sensory systems were observed in association with some of the gliding motility 

genes, indicating that the expression of gliding motility could be dependent on 

environmental stimuli. If this is the case more broadly, any number of marine 

flavobacteria thought to lack gliding motility might only be non-motile under culture 

conditions.  

A requirement for organic nitrogen may be a more feasible criterion for predicting 

potentially predator flavobacteria. Hypothetically, a bacterium that is adapted to graze on 

cellular biomass is unlikely to find itself in a nitrogen-limiting environment while 

growing. As with other predators [22], respiration of prey biomass should leave a surplus 

of nitrogen. Therefore, fully adapted predators would have the luxury of abandoning or at 

least down-regulating inorganic nitrogen transporters, relative to close relatives more 

adapted to a non-predatory, more conventionally heterotrophic lifestyle. Although the 

ability to assimilate inorganic nitrogen has not been explicitly assessed for most 

described marine flavobacteria species, four Tenacibaculum species as well as those 

studied in this thesis have been reported as requiring organic nitrogen sources. In 

addition, K. algicida was reported to require organic nitrogen as well.  



 137

In any case, there is a definite limit to what can be hypothesized based on existing 

literature. Fundamentally, in order to better constrain the potential distribution of 

predatory lifestyles amongst marine flavobacteria, more existing cultures need to be 

assessed for bacteriolytic growth and more novel cultures need to be obtained. The non-

obligate nature of flavobacterial predation suggests it is quite possible for a substantial 

number of predatory marine strains to be present in culture collections already. Since 

non-obligate predators lyse prey cells extracellularly, they actually assimilate complex 

organic matter and are able to grow on it in the absence of living prey.  

Although testing of existing culture collections will be informative, it will be 

difficult to connect the test results to the original environment, given the possibility that 

the strains’ predatory biology might have evolved significantly away from the wild-type 

while in laboratory culture. For example, Micavibrio admirandus has been reported to 

have lost its initially narrow prey specificity over time in the laboratory [63]. The 

mechanism by which this broadening of prey specificity occurred is unknown. Part of the 

disparity between the prey specificity tests in this thesis (Ch. 2-3) could be explained by a 

similar broadening in prey specificity in culture. In another study, Myxococcus xanthus 

cultures were successfully subjected to experimental evolution in the laboratory to 

increase their foraging proficiencies [176]. There may be other unintended selective 

pressures inherent in the culture protocols used to enrich and isolate surface-associated 

predatory bacteria as well. Therefore, when the goal is to assess the environmental role of 

predatory marine flavobacteria, an emphasis should be placed on culturing novel strains, 

exploring more environmentally relevant culture conditions and minimizing as much as 

possible the exposure of isolates to laboratory selection pressures.  

 

Evolution of surface-associated predatory bacteria 

The study of the distribution of predatory activity amongst such a metabolically 

and ecologically diverse group as the marine flavobacteria offers a thus far unique 

opportunity to explore the evolution of surface-associated predation. As noted previously 

(Ch. 1), the general life habit of gliding motility, social coordination and prey lysis by 
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potentially cell-contact-mediated mechanisms is known to occur in six distinct bacterial 

groups: the myxobacteria (δ-Proteobacteria), the genera Herpetosiphon (Chloroflexi), 

Lysobacter (γ-Proteobacteria), Saprospira, Olleya and Tenacibaculum (Bacteroidetes). 

The large phylogenetic distance between these groups strongly suggests that they have 

developed similar growth habits via convergent evolution.  

In fact, it has been hypothesized that gliding predators may be easily able to move 

back and forth evolutionarily between scavenging, saprophytic lifestyles and more 

aggressive predatory or parasitic ones [14]. Such a case seems plausible, since essentially 

similar hydrolytic capabilities to degrade proteins and other polymeric macromolecules 

would be advantageous for both scavenging saprophytes and predators.  

In contrast to a group like the myxobacteria, which are uniformly predatory and 

do not appear to include any non-predatory species [34], the predatory marine 

flavobacteria appear to be heterogeneously mixed with non-predatory relatives. In 

addition, the marine flavobacteria include at least some lytic species that do not appear to 

lyse in a strictly predatory manner, such as the algal-lytic strain AMA-01 [82]. This 

suggests that different lineages within the flavobacteria are in the process of developing 

and losing predatory capability, which could greatly facilitate both evolutionary studies 

of predatory bacteria and the development of culture-independent markers for predatory 

activity.  
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APPENDIX  

 

Media recipes:  

DNb25 (for 1 liter) 

715 mL Artificial Sea Water, 

autoclaved separately 

185 mL deionized water 

0.8 g nutrient broth 

0.5 g casamino acids 

0.1 g yeast extract 

pH adjusted to about 7.2, combined 

after cooling with 100 mL of Ca/Mg 

stock solution 

1/10 LB25 (for 1 liter) 

715 mL Artificial Sea Water, 

autoclaved separately 

285 mL deionized water 

1.55 g Difco Luria Broth base 

pH adjusted to about 7.2, combine 

after cooling 

ASW25 (for 1 liter) 

715 mL Artificial Sea Water 

285 mL deionized water 

1 g CaCl2*2H2O 

pH adjusted to about 7.2 and 

autoclaved 

 

 

 

20ppt ASW-HEPES buffer (for 1 liter) 

570 mL Artificial Sea Water 

410 mL deionized water 

20 mL 0.5 M HEPES pH = 7.2 

1 g CaCl2*2H2O 

pH adjusted to about 7.2 and 

autoclaved 

BD1 broth (2 g/L sugar; for 1 liter) 

715 mL Artificial Sea water, 

autoclaved separately with 20 

mL 0.5 M HEPES pH = 7.2, 1 

mL trace metals solution and 

2 g (NH4)2SO4 

228 mL deionized water 

1 g NaH2PO4 

pH adjusted to about 7.2 and 

autoclaved, combine after 

cooling and add 22.2 mL 

filters-sterilized 20% (D)-

glucose/2.5% sodium citrate 

stock solution (w/v) 
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BD1 agar (0.01 g/L sugar; for 1 liter) 

715 mL Artificial Sea water, 

autoclaved separately with 20 

mL 0.5 M HEPES pH = 7.2, 1 

mL trace metals solution and 

2 g (NH4)2SO4 

228 mL deionized water 

15 g agar 

1 g NaH2PO4 

pH adjusted to about 7.2 and 

autoclaved, combine after 

cooling and add 111 μL 

filters-sterilized 20% (D)-

glucose/2.5% sodium citrate 

stock solution (w/v) 

LB25 (for 1 liter) 

715 mL Artificial Sea Water 

285 mL deionized water 

15.5 g Difco Luria Broth base 

pH adjusted to about 7.2 and 

autoclave 

WAT agar (for 1 liter) 

715 mL Artificial Sea Water 

265 mL deionized water 

20 mL 0.5 M HEPES pH = 7.2 

15 g agar 

1 g CaCl2*2H2O 

pH adjusted to about 7.2 and 

autoclaved 

 

Phosphate Buffer Saline (in 1 liter 

deionized water) 

8 g NaCl  

0.2 g KCl  

1.15 g Na2HPO4*7H2O 

0.2 g KH2PO4  

pH adjusted to about 7.3 and 

autoclaved 

DN(30) concentrate stock (40 mL) 

40 mL deionized water 

0.8 g nutrient broth 

0.5 g casamino acids 

0.1 g yeast extract 

pH adjusted to 7.2 and autoclaved 

DN at varying salinities (10 mL each) 

400 μL DN(30) concentrate 

1 mL Ca/Mg stock solution 

8.6 mL sterile Artificial Sea Water for 

30 ppt, 8.6 mL sterile 

deionized water for 0 ppt and 

proportions scaled as 

appropriate for all salinity 

points in between 
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Chapter 2 supplementary material:  

Detailed culture media:  

T. discolor, T. gallaicum and O. marilimosa were maintained on marine agar (per 

liter of deionized water: 37.4 g Difco Marine Broth 2216, 15 g agar powder, autoclaved). 

Nitrosomonas sp. C113a was maintained in Watson broth (per liter of artificial sea water 

(ASW; per liter of deionized water: 24.72 g NaCl, 0.671 g KCl, 1.3625 g CaCl2*2H2O, 

4.664 g MgCl2*6H2O, 6.286 g MgSO4*7H2O and 0.18 g NaHCO3): 5 mL 5M NH4Cl, 0.5 

mL 0.27 M CaCl2, 1 mL 1.45 M MgCl2, 1 mL trace metal mix [220], 400 μL 5 g/L 

phenol red, autoclaved and amended with 1 mL 0.05 M K2HPO4). All other prey 

organisms were grown from 15% glycerol freezer stocks. E. coli, S. oneidensis, P. putida, 

P. corrugata and B. subtilis were routinely grown in Lysogeny broth (25 g Miller LB 

broth per liter of deionized water, autoclaved). K. kristinae was grown in 

Corynebacterium broth (per liter of deionized water: 10 g Bacto Proteose Peptone No.6, 5 

g yeast extract, 5 g anhydrous reagent-grade D(+)-glucose, 5 g NaCl). F. johnsoniae was 

grown in deionized water amended with 0.03% w/v tryptone and 0.03% w/v yeast 

extract, with the pH adjusted to 7.2 and autoclaved. S. cerevisiae was grown in deionized 

water amended with 1% w/v D(+)-glucose and 1% w/v yeast extract, pH adjusted to 7.2 

and autoclaved. P. maris was grown in peptone-ASW [221]. H. radiodurans was 

routinely grown on Marine agar.  

Dilute nutrient agar (DNa; 0.8 g nutrient broth, 0.5 g cas-amino acids, 0.1 g yeast 

extract and 15 g agar powder in 900 mL water, adjusted to pH 7.2, autoclaved and 

amended with 100 mL of a sterile solution of 3 g/L CaCl2*2H2O and 6 g/L MgCl2*6H2O) 

was routinely used to grow the predatory strains non-predatorily, with 715 mL ASW 

substituted for deionized water when appropriate to achieve a salinity of 25. PBS (for 1 

L: 8 g NaCl, 0.2 g KCl, 1.15 g Na2HPO4*7H2O, 0.2 g KH2PO4 in 1 liter deionized water, 

pH adjusted to about 7.3 and autoclaved) was routinely used as a buffer for cell fixation 

and FISH. 
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Figure S1: Two-dimensional projections of z-stacks of VCSA23 and S. oneidensis prey in a membrane filter culture captured 
by confocal microscopy. Scale bars are 10 μm. The top row of images shows the Cy3-labeled (red) probe specific to strains 
VCSA23 and VCSM12, while the bottom row shows the FITC-labeled (green) GAM42a probe. From left to right: About 2 
mm from the predator-prey interface, extremely dense masses of VCSA23 cells are observed with very few prey cells. About 1 
millimeter from the interface, the dense masses of VCSA23 cells are not as large and prey cells are present in higher density. 
About 250 micrometers from the interface a moderate density of prey cells is surrounded by swarming VCSA23 cells. At the 
VCSA23 cell front, a high density of VCSA23 cells is swarming into the S. oneidensis lawn, with a visible decrease in S. 
oneidensis density observed just behind the VCSA23 cell front. About 1 millimeter beyond the predator-prey interface, an 
undisturbed S. oneidensis lawn is observed, with a few scattered VCSA23 cells having penetrated ahead of the predator-prey 
interface. Approximate distances between each image along the transect across the predator-prey interface are shown at the 
top.  
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Figure S2: Two-dimensional projections of z-stacks of strain VCSM12 and S. oneidensis in a membrane filter culture, 
acquired by confocal microscopy. The top row of images show the Cy3 fluorescence channel, labeled with the VCSA23 probe. 
The bottom row of images shows the FITC fluorescence channel, labeled with the GAM42a probe. The set of three frames 
shown on the right side were taken along a transect across the front of interaction between VCSM12 and S. oneidensis. The 
frame on the far left was acquired at a location well within the cleared region, where VCSM12 cell density is extremely high. 
The second frame from the left was acquired at an intermediate location about 1200 μm from the nearest interaction zone, 
showing an example of a round aggregate of VCSM12 cells generally formed about 1 mm behind the interaction zone. 
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Figure S3: Two-dimensional projections of z-stacks of VCSA14A and S. oneidensis prey in a membrane filter culture captured 
by confocal microscopy. The top row of images show the Cy3-labeled probe (red) specific to strain VCSA14A and the bottom 
row of images show the FITC-labeled GAM42a probe (green). Approximate distances between each image along a transect 
across the predator-prey interface are shown at the top. The images on the left side of the figure show the low density and 
small size of VCSA14A cells after prey cells have been eliminated.  
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Figure S4: Two-dimensional projections of T. gallaicum A37.1T cells (labeled with the 
VCSA14A-Cy3 probe hybridized at 0% formamide, top, in red) and S. oneidensis prey 
(labeled with the GAM42a-FITC probe, top, in green). From left to right: the most 
recently cleared zone, the interface between the expanding T. gallaicum cell front and the 
prey lawn, and the prey lawn relatively undisturbed by T. gallaicum cells. The three sets 
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of 2-D projections were acquired adjacent to each other along a transect crossing the T. 
gallaicum cell front. The graph at bottom was constructed identically to that in Figures 2 
and 3, using the full transect the set of images described above were drawn from. 
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